Estrellas Variables Y Su Estudio En El Observatorio Nacional Argentino

Total Page:16

File Type:pdf, Size:1020Kb

Estrellas Variables Y Su Estudio En El Observatorio Nacional Argentino ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [1] OBSERVATORIO NACIONAL ARGENTINO Santiago Paolantonio [email protected] www.historiadelaastronomia.wordpress.com El conocimiento de que determinadas estrellas cambian su brillo, algunas periódicamente otras irregularmente, se remonta a fines del siglo XVI. La cantidad de estos singulares astros conocidos a comienzos de los 1800 era de solo 16, situación que comenzó a revertirse a partir de ese momento en la medida que los astrónomos empezaron a prestarles progresivamente mayor atención, lo que se ve reflejado en el creciente número de estrellas variables identificadas. Friedrich Argelander, en el Anuario para 1844 de H. C. Schumacher, escribe "Invitación a los amigos de la astronomía", en el cual propone diversos trabajos con los que aficionados a la astronomía podían contribuir a esta ciencia, entre ellos, la observación de estrellas variables. En este texto incluye el nombre de 18 de estos objetos, todos visibles a simple vista y solo tres pertenecientes al cielo austral (Argelander, 1844; 214). Una década más tarde, Norman R. Pogson, asistente del Radcliffe Observatory de la Universidad de Oxford, lista 53 variables con sus correspondientes magnitudes máximas, mínimas y períodos, 13 de las cuales tienen declinación negativa (Johnson, 1856; 281-282). En 1865 aparece en la revista alemana Astronomische Nachrichten, un catálogo de 123 estrellas variables, recopiladas por el aficionado británico George W. Chambers, 35 ubicadas al sur del ecuador celeste (Chambers, 1865). Ese mismo año, Eduard Schönfeld, discípulo de Argelander, publica una lista con 113 estrellas (Pickering, 1903). Es en esta época que comienza el estudio sistemático de las variaciones de luz de estas estrellas. Cuando en 1870 se inician los estudios del cielo austral desde el Observatorio Nacional Argentino, se habían agregado 22 nuevas variables (Pickering, 1903). Habíamos señalado en Minniti, Paolantonio y Melia 2000 que a lo largo de la primera etapa del observatorio, hasta el año 1908, correspondiente a las direcciones de Benjamin Gould y John Thome, los extensos y detallados estudios que se realizaron primero para la Uranometría Argentina, posteriormente para los grandes catálogos y en especial para la Córdoba Durchmusterung, derivaron en el descubrimiento de una considerable cantidad de estrellas variables. En la Uranometría Argentina, aparecida en 1879, se señalaron 208 nuevas estrellas variables o sospechosas de serlo. Por otro lado, en la Córdoba Durchmusterung, se publicaron tres listas: 527 en la primera entrega, volumen 16 de los Resultados del Observatorio Nacional Argentino, 236 en la segunda entrega, volumen 17 y 774 en la tercera entrega, volumen 18 (Thome, 1892; 1894 y 1900). Totalizan la notable cifra de 1536 estrellas. S. Paolantonio Agosto 2013 ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [2] OBSERVATORIO NACIONAL ARGENTINO Carta de identificación de T Monocerotis en una de las libretas originales en que se registraban las observaciones para la Uranometría Argentina (Museo OAC, digitalización S. Paolantonio). Teniendo en cuenta el número de variables conocida en la época, el número encontrado resulta ser una contribución sumamente considerable, sin embargo, son relativamente poco conocidas cuáles específicamente fueron descubiertas en estos trabajos. Una detallada revisión de las estrellas marcadas en el catálogo de la Uranometría – páginas 131 a 234 – con “var”, consideradas como variables y con “var?” sospechadas de serlo, además de la revisión de las “Notas del Catálogo” – páginas 240 a 339 –, y su cruce con la última edición del Catálogo General de Estrellas Variables, listas complementarias y el Nuevo Catálogo de Estrellas Variables Sospechosas (Samus et al, 2007-2012), permitió determinar que actualmente 67 son consideradas variables y 62 sospechosas. A continuación se resumen los resultados obtenidos. Estrellas actualmente catalogadas como variables, que fueron señaladas en la Uranometría Argentina como variables o sospechosas. (Ordenadas por ascensión recta) Nu Fornacis V376 Puppis GT Muscae V2368 Ophiuchi X Tauri NSV 3708 V Hydrae U Ophiuchi R Doradus T Puppis T Carinae RS Sagittarii R Eridani NSV 4389 Epsilon Muscae V4028 Sagittarii S Eridani NSV 4492 R Sculptoris Kappa Pavonis V1085 Orionis N Velorum R Muscae V4198 Sagittarii CI Orionis R Carinae EP Virginies V5548 Sagittarii V1377 Orionis l Carinae Theta Apodis V4438 Sagittarii NSV 2918 R Velorum R Apodis Rho Pavonis T Monocerotis R Antliae CU Virginies Epsilon Pegasi NSV 3234 S Carinae R Centauri DQ Gruis NSV 3285 V337 Carinae T Trianguli Australi IOTA Phoenicis V637 Monocerotis LX Velorum R Trianguli Australi TX Piscium Sigma Canis Majoris U Antliae Delta Lupi HH Pegasi OU Puppis U Hydrae R Normae AL Sculptoris L2 Puppis V429 Carinae S Trianguli Australi NSV 13 U Monocerotis V519 Carinae KHI Ophiuchi S. Paolantonio Agosto 2013 ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [3] OBSERVATORIO NACIONAL ARGENTINO En la Uranometría Argentina las magnitudes se realizaron utilizando el método fraccionario. En la imagen se muestra una parte de las anotaciones originales realizada en 1873. Cada estrella era observada al menos por dos observadores. Cuando las estimas diferían eran medidas nuevamente y seguidas a lo largo de los años por si se trataban de variables. Los estrictos controles llevaron a que la dispersión interna de las estimas fuera del orden de 0,03 magnitudes[1] (Museo OAC, digitalización S. Paolantonio). Estrellas actualmente catalogadas como sospechosas de variabilidad, que fueron señaladas en la Uranometría Argentina como variables o sospechosas. (Número correspondientes al NSV - New Catalogue of Suspected Variable Stars-) 446 2690 5555 11056 278 2770 5656 11557 487 3017 5729 11769 504 3777 6213 11992 711 17785 6253 12155 1337 4346 6500 12933 1556 4428 6648 13187 1731 4440 6629 13419 1755 4568 6630 13627 1826 4725 6675 14057 1837 4862 7578 14291 1872 4856 7844 14068 2240 5006 8088 14320 2261 5456 8664 14338 2549 5515 9037 14528 2641 10009 S. Paolantonio Agosto 2013 ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [4] OBSERVATORIO NACIONAL ARGENTINO L2 Puppis fue una de las más notables estrellas variables descubiertas durante la realización de la Uranometría Argentina. La imagen muestra la carta de identificación realizada para su observación con Círculo Meridiano en 1881 (Museo OAC, digitalización S. Paolantonio). Estrellas que fueron incluidas en el “New Catalogue of Suspected Variable Stars” y hoy se consideran que no lo son. (Número correspondientes al NSV) 219 3689 5111 7635 540 3830 5157 7966 561 4085 5662 8062 579 4104 6043 8509 eta 1 Hyi 4142 6092 10173 911 4186 6120 11372 982 4282 6281 12088 1142 4423 6315 12201 1763 4694 6608 13064 1800 4758 6769 13113 1806 4797 6807 13208 2158 4837 6821 13660 2714 4909 7058 13662 2866 4978 7149 13692 2896 5041 7239 14049 3669 S. Paolantonio Agosto 2013 ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [5] OBSERVATORIO NACIONAL ARGENTINO Información sobre cada una de estas estrellas pueden obtenerse en los siguientes vínculos: The International Variable Star Index (www.aavso.org/vsx/index.php?view=search.top) General Catalog of Variable Stars (GCVS database) (www.sai.msu.su/gcvs/cgi- bin/search.htm) Las siguientes estrellas indicadas según la codificación de la Uranometría Argentina (código de constelación y número correlativo por ascensión recta) que no se encontraron en los catálogos GCVS, Listas complementarias y NSV. Pisces 108 Puppis 74 Pisces 110 Volans 10 Pisces 111 Puppis 108 Pisces 112 Puppis 111 Leo 43 Puppis 114 Fornax 50 Puppis 157 Mensa 22 Hydra 56 Orion110 Hydra 60 Los datos de estas estrellas pueden encontrarse en el catálogo en el siguiente vínculo: http://historiadelaastronomia.files.wordpress.com/2010/12/uab_catalogo.pdf Otras variables descubiertas Durante las observaciones meridianas realizadas para los catálogos de Zonas y General Argentino, fueron halladas otras variables, relativamente pocas en comparación a los otros trabajos. Por ejemplo: R Piscis Austrini, R Indi (Gould, 1884), R Phoenicis (Gould, 1885) y S Centauri (Gould, 1890) En cuanto a las descubiertas en la Córdoba Durchmusterung, dado el elevado número de las mismas aún no ha sido posible identificar todas las variables, algunas de las cuales son las siguientes: T Sculptoris R Fornacis T Horologii S Pyxidis Y Velorum RU Hydrae T Normae SS Scorpii RR Scorpii RZ Sagittarii RR Capricorni W Sculptoris Z Sculptoris U Sculptoris U Eridani S Columbae Y Puppis R Lupi RX Scorpii S. Paolantonio Agosto 2013 ESTRELLAS VARIABLES Y SU ESTUDIO EN EL [6] OBSERVATORIO NACIONAL ARGENTINO Hoja original que fue enviada al impresor con parte de la lista de las sospechosas de variabilidad de la Córdoba Durchmusterung, conservada en el Museo del Observatorio (Museo OAC, digitalización S. Paolantonio). Nota [1] El método fraccionario consiste en la comparación de la estrella a la cual se le desea determinar su brillo con otras dos cuyas magnitudes se conocen. Una de éstas debe ser más brillante, mientras que la otra menos. El intervalo de magnitudes de las estrellas de comparación se divide en 3, 5 o 10 partes y se elige en que fracción se ubica la estrella que se está estimando. El método es aún hoy usado para estimas rápidas de brillo y por los astrónomos aficionados, por ejemplo, para el seguimiento de estrellas variables. El error promedio para una observación individual es del orden de 0,1 magnitudes, el cual se reduce cuando la estima es realizada por diversos observadores. El valor de 0,03 magnitudes es muy bueno y fue obtenido por el Dr. G. De Vaucouleurs (De Vaucouleurs 1970). Sin embargo, la escala de la Uranometría difiere de las actuales unas 0,3 magnitudes en exceso de acuerdo a estudios preliminares realizados por el autor (Paolantonio y Minniti, 2008). Referencias Argelander, F. W. A. (1844). Aufforderung an freunde der astronomie, en Schumacher, H. C. (1844) Jahrbuch für 1844, 122-254. Chambers, G. F. (1865). A Catalogue of variable Stars. Astronomische Nachrichten, vol. 63, 117- 124. De Vaucouleurs, G. (1970). The wonder star, Eta Carinae, and the Uranometría Argentina, Primer Congreso de Historia de la Ciencia, Septiembre 11-13 de 1969, Boletín de la Academia Nacional de Ciencias, Tomo 48, Córdoba.
Recommended publications
  • Detection of an Asymmetry in the Envelope of the Carbon Mira R Fornacis Using VLTI/MIDI,
    A&A 544, L5 (2012) Astronomy DOI: 10.1051/0004-6361/201219831 & c ESO 2012 Astrophysics Letter to the Editor Detection of an asymmetry in the envelope of the carbon Mira R Fornacis using VLTI/MIDI, C. Paladini1, S. Sacuto2, D. Klotz1, K. Ohnaka3, M. Wittkowski4,W.Nowotny1, A. Jorissen5, and J. Hron1 1 University of Vienna, Dept. of Astrophysics, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 3 Max-Planck-Institut für Radioastronomie, 53121 Bonn, Germany 4 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 5 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Bruxelles, Belgium Received 17 June 2012 / Accepted 12 July 2012 ABSTRACT Aims. We present a study of the envelope morphology of the carbon Mira R For with VLTI/MIDI. This object is one of the few asymptotic giant branch (AGB) stars that underwent a dust-obscuration event. The cause of such events is still a matter of discussion. Several symmetric and asymmetric scenarios have been suggested in the literature. Methods. Mid-infrared interferometric observations were obtained separated by two years. The observations probe different depths of the atmosphere and cover different pulsation phases. The visibilities and the differential phases were interpreted using GEM-FIND, a tool for fitting spectrally dispersed interferometric observations with the help of wavelength-dependent geometric models. Results. We report the detection of an asymmetric structure revealed through the MIDI differential phase. This asymmetry is observed at the same baseline and position angle two years later.
    [Show full text]
  • 136, June 2008
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Assaj V2 N4 1930-Jan
    ijtlJt Journal {If tl]t J\.strauamital ~ add!,! af ~ autb J\.frita. Vol. II. JANUARY, 1930. No.4. Astronomical Society of South Africa~ "' AT HOME" TO VISITING ASTRONOMERS OF THE BRITISH ASSOCIATION. July 26, 1929, will long be remembered in the annals of the Astronomical Society of South Africa, for on the evening of that day it was "At Home" at the Oddfellows' Hall, Plein Street, Cape Town, to the visiting astronomers who were attending the meetings of the British Association. The chair was taken by Mr. A. W. Long, President of the Society, who, in opening the proceedings, said: This gathering of the Astronomical Society of South Africa has been arranged to enable the members to greet the distinguished astronomers and other eminent scien­ tists interested in astronomy who are visiting South Africa in connection with the meetings of the British Association. We have with us to-night Sir Frank Dyson, the Astronomer Royal; Professor Eddington, Director of the Cambridge University Observatory; Professor Fowl~r, Yarrow Research Professor of the Royal Society; Pro­ fessor Chapman, of the Imperial College of Science; Professor De Sitter, Director of the Leiden Observatory; Dr. Guthnick, Director of the Berlin-Babelsberg Obser­ vatory; Dr. K110x-Shaw, Director of the Radcliffe Observatory; Mr. Greaves, of the Greenwich Observa­ tory; Mr. Wrigley, of the Edinburgh Observatory; Dr. Aston, of Cambridge, and I am pleased to say that at a later stage Lord Rayleigh will also be here. In the name of the Society I extend to these gentlemen a very hearty welcome. We have been familiar with them for a very long time by name, and through their scientific attainments; now we are delighted to have the honour of meeting them in person.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • ASTRONOMY and ASTROPHYSICS Modelling the Spectral Energy
    Astron. Astrophys. 343, 466–476 (1999) ASTRONOMY AND ASTROPHYSICS Modelling the spectral energy distribution and SED variability of the Carbon Mira R Fornacis? A. Lobel1, J.G. Doyle1, and S. Bagnulo2 1 Armagh Observatory, College Hill, Armagh BT61 9DG, Ireland 2 Institut fur¨ Astronomie, Universitat¨ Wien, Turkenschanzstrasse¨ 17, A-1180 Wien, Austria Received 2 July 1998 / Accepted 2 December 1998 Abstract. We have developed a new method to determine the carbide (SiC) grains around stars with carbon-rich atmospheres, physical properties and the local circumstances of dust shells whereas a feature seen near 9.7 µm is ascribed to silicate grains surrounding Carbon- and Oxygen-rich stars for a given pulsa- in the environments of O-rich stars. Low resolution spectra of tion phase. The observed mid-IR dust emission feature(s), in Asymptotic Giant Branch (AGB) stars observed by IRAS in conjunction with IRAS BB photometry and coeval optical and the mid-1980 s enabled a classification of these features (Little- near-IR BB photometry, are modelled from radiative transport Marenin & Little 1988) and to attempt the modelling of their for- calculations through the dust shell using a grid of detailed syn- mation conditions. To that end various sophisticated numerical thetic model input spectra for M-S-C giants. From its application codes have been developed since. A brief review of their gradual to the optical Carbon Mira R For we find that the temperature improvements over the years and a performance comparison of of the inner shell boundary exceeds 1000 K, ranging between three modern codes was discussed by Ivezic´ et al.
    [Show full text]
  • MAS Mentoring Project Overview 2020
    Macarthur Astronomical Society Student Projects in Astronomy A Guide of Teachers and Mentors 2020 (c) Macarthur Astronomical Society, 2020 DRAFT The following Project Overviews are based on those suggested by Dr Rahmi Jackson of Broughton Anglican College. The Focus Questions and Issues section should be used by teachers and mentors to guide students in formulating their own questions about the topic. References to the NSW 7-10 Science Syllabus have been included. Note that only those sections relevant are included. For example, subsections a and d may be used, but subsections b and c are omitted as they do not relate to this topic. A generic risk assessment is provided, but schools should ensure that it aligns with school- based policies. MAS Student Projects in Astronomy page 1 Project overviews Semester 1, 2020: Project Stage Technical difficulty 4 5 6 1 The Moons of Jupiter X X X Moderate to high (extension) NOT available Semester 1 2 Astrophotography X X X Moderate to high 3 Light pollution X X Moderate 4 Variable stars X X Moderate to high 5 Spectroscopy X X High 6 A changing lunarscape X X Low to moderate Recommended project 7 Magnitude of stars X X Moderate to high Recommended for technically able students 8 A survey of southern skies X X Low to moderate 9 Double Stars X X Moderate to high 10 The Phases of the Moon X X Low to moderate Recommended project 11 Observing the Sun X X Moderate MAS Student Projects in Astronomy page 2 Project overviews Semester 2, 2020: Project Stage Technical difficulty 4 5 6 1 The Moons of Jupiter
    [Show full text]
  • THE CONSTELLATION MUSCA, the FLY Musca Australis (Latin: Southern Fly) Is a Small Constellation in the Deep Southern Sky
    THE CONSTELLATION MUSCA, THE FLY Musca Australis (Latin: Southern Fly) is a small constellation in the deep southern sky. It was one of twelve constellations created by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman and it first appeared on a 35-cm diameter celestial globe published in 1597 in Amsterdam by Plancius and Jodocus Hondius. The first depiction of this constellation in a celestial atlas was in Johann Bayer's Uranometria of 1603. It was also known as Apis (Latin: bee) for two hundred years. Musca remains below the horizon for most Northern Hemisphere observers. Also known as the Southern or Indian Fly, the French Mouche Australe ou Indienne, the German Südliche Fliege, and the Italian Mosca Australe, it lies partly in the Milky Way, south of Crux and east of the Chamaeleon. De Houtman included it in his southern star catalogue in 1598 under the Dutch name De Vlieghe, ‘The Fly’ This title generally is supposed to have been substituted by La Caille, about 1752, for Bayer's Apis, the Bee; but Halley, in 1679, had called it Musca Apis; and even previous to him, Riccioli catalogued it as Apis seu Musca. Even in our day the idea of a Bee prevails, for Stieler's Planisphere of 1872 has Biene, and an alternative title in France is Abeille. When the Northern Fly was merged with Aries by the International Astronomical Union (IAU) in 1929, Musca Australis was given its modern shortened name Musca. It is the only official constellation depicting an insect. Julius Schiller, who redrew and named all the 88 constellations united Musca with the Bird of Paradise and the Chamaeleon as mother Eve.
    [Show full text]
  • Constelações – Volume 8
    Coleção Os Mensageiros das Estrelas: Constelações – volume 8 Constelações de Maio Organizador Paulo Henrique Colonese Autores Leonardo Pereira de Castro Rafaela Ribeiro da Silva Ilustrador Caio Lopes do Nascimento Baldi Fiocruz-COC 2021 Coleção Os Mensageiros das Estrelas: Constelações – volume 8 Constelações de Maio Organizador Paulo Henrique Colonese Autores Leonardo Pereira de Castro Rafaela Ribeiro da Silva Ilustrador Caio Lopes do Nascimento Baldi Fiocruz-COC 2021 ii Licença de Uso O conteúdo dessa obra, exceto quando indicado outra licença, está disponível sob a Licença Creative Commons, Atribuição-Não Comercial-Compartilha Igual 4.0. FUNDAÇÃO OSWALDO CRUZ Presidente Nísia Trindade Lima Diretor da Casa de Oswaldo Cruz Paulo Roberto Elian dos Santos Chefe do Museu da Vida Alessandro Machado Franco Batista TECNOLOGIAS SERVIÇO DE ITINERÂNCIA Stellarium, OBS Studio, VideoScribe, Canva CIÊNCIA MÓVEL Paulo Henrique Colonese (Coordenação) Ana Carolina de Souza Gonzalez Fernanda Marcelly de Gondra França REVISÃO CADERNO DE CONTEÚDOS Flávia Souza Lima Paulo Henrique Colonese Lais Lacerda Viana Marta Fabíola do Valle G. Mayrink APOIO ADMINISTRATIVO (Coordenação) Fábio Pimentel Paulo Henrique Colonese Rodolfo de Oliveira Zimmer MÍDIAS E DIVULGAÇÃO Julianne Gouveia CONCEPÇÃO E DESENVOLVIMENTO Melissa Raquel Faria Silva Jackson Almeida de Farias Renata Bohrer Leonardo Pereira de Castro Renata Maria B. Fontanetto (Coordenação) Luiz Gustavo Barcellos Inácio (in memoriam) Paulo Henrique Colonese (Coordenação) CAPTAÇÃO DE RECURSOS Rafaela Ribeiro da Silva Escritório de Captação da Fiocruz Willian Alves Pereira Willian Vieira de Abreu GESTÃO CULTURAL Sociedade de Promoção da Casa de Oswaldo DESIGN GRÁFICO E ILUSTRAÇÃO Cruz Caio Lopes do Nascimento Baldi Biblioteca de Educação e Divulgação Científica Iloni Seibel C756 Constelações de maio [recurso eletrônico] / Organizador: Paulo Henrique Colonese.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Interstellar Na I Absorption Towards Stars in the Region of the IRAS Vela Shell 1 3 M
    4. Towards the Galactic Rotation Observatory and is now permanently in­ the rotation curve from 12 kpc to 15 kpc Curve Beyond 12 kpc with stalled at the 1.93-m telescope of the and answer the question: ELODIE Haute-Provence Observatory. This in­ "Does the dip of the rotation curve at strument possesses an automatic re­ 11 kpc exist and does the rotation curve A good knowledge of the outer rota­ duction programme called INTER­ determined from cepheids follow the tion curve is interesting since it reflects TACOS running on a SUN SPARC sta­ gas rotation curve?" the mass distribution of the Galaxy, and tion to achieve on-line data reductions The answer will give an important clue since it permits the kinematic distance and cross-correlations in order to get about the reality of a local non-axi­ determination of young disk objects. the radial velocity of the target stars symmetric motions and will permit to The rotation curve between 12 and minutes after the observation. The investigate a possible systematic error 16 kpc is not clearly defined by the ob­ cross-correlation algorithm used to find in the gas or cepheids distance scale servations as can be seen on Figure 3. the radial velocity of stars mimics the (due for instance to metal deficiency). Both the gas data and the cepheid data CORAVEl process, using a numerical clearly indicate a rotation velocity de­ mask instead of a physical one (for any References crease from RG) to R= 12 kpc, but then details, see Dubath et al. 1992).
    [Show full text]