1. Injective Objects and Resolutions Let I Be an Object in a Category
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Homotopy Categories of Injective Modules of Derived Discrete Algebras
Dissertation zur Erlangung des Doktorgrades der Mathematik (Dr.Math.) der Universit¨atBielefeld The homotopy categories of injective modules of derived discrete algebras Zhe Han April 2013 ii Gedruckt auf alterungsbest¨andigemPapier nach DIN{ISO 9706 Abstract We study the homotopy category K(Inj A) of all injective A-modules Inj A and derived category D(Mod A) of the category Mod A of all A-modules, where A is finite dimensional algebra over an algebraically closed field. We are interested in the algebra with discrete derived category (derived discrete algebra. For a derived discrete algebra A, we get more concrete properties of K(Inj A) and D(Mod A). The main results we obtain are as following. Firstly, we consider the generic objects in compactly generated triangulated categories, specially in D(Mod A). We construct some generic objects in D(Mod A) for A derived discrete and not derived hereditary. Consequently, we give a characterization of algebras with generically trivial derived categories. Moreover, we establish some relations between the locally finite triangulated category of compact objects of D(Mod A), which is equivalent to the category Kb(proj A) of perfect complexes and the generically trivial derived category D(Mod A). Generic objects in K(Inj A) were also considered. Secondly, we study K(Inj A) for some derived discrete algebra A and give a classification of indecomposable objects in K(Inj A) for A radical square zero self- injective algebra. The classification is based on the fully faithful triangle functor from K(Inj A) to the stable module category Mod A^ of repetitive algebra A^ of A. -
Lecture 3. Resolutions and Derived Functors (GL)
Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring. -
Arithmetic Duality Theorems
Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126 -
A Algebraic Varieties
A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S. -
INJECTIVE OBJECTS in ABELIAN CATEGORIES It Is Known That The
INJECTIVE OBJECTS IN ABELIAN CATEGORIES AKHIL MATHEW It is known that the category of modules over a ring has enough injectives, i.e. any object can be imbedded as a subobject of an injective object. This is one of the first things one learns about injective modules, though it is a nontrivial fact and requires some work. Similarly, when introducing sheaf cohomology, one has to show that the category of sheaves on a given topological space has enough injectives, which is a not-too-difficult corollary of the first fact. I recently learned, however, of a much more general result that guarantees that an abelian category has enough injectives (which I plan to put to use soon with some more abstract nonsense posts). I learned this from Grothendieck's Tohoku paper, but he says that it was well-known. We will assume familiarity with basic diagram-chasing in abelian categories (e.g. the notion of the inverse image of a subobject). 1. Preliminaries Let C be an abelian category. An object I 2 C is called injective if the functor A ! HomC(A; I) is exact; it is always left-exact. This is the same as saying that if A is a subobject of B, then any A ! I can be extended to a morphism B ! I. Let us consider the following conditions on an abelian category C. First, assume C admits all filtered colimits. So, for instance, arbitrary direct sums exist. P Moreover, if the Ai; i 2 I are subobjects of A, then the sum Ai makes sense; L it is the image of i Ai ! A, and is a sub-object of A. -
Injective Objects in Triangulated Categories
Injective objects in triangulated categories Garkusha, Grigory and Prest, Mike 2004 MIMS EPrint: 2006.109 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 INJECTIVE OBJECTS IN TRIANGULATED CATEGORIES GRIGORY GARKUSHA AND MIKE PREST 1. Introduction We extend ideas and results of Benson and Krause on pure-injectives in triangulated categories. Given a generating set of compact objects in a compactly generated triangulated category T we define notions of monomorphism, exactness and injectivity relative to this set. We show that the injectives correspond to injective objects in a localisation of the functor category Mod Tc where Tc denotes the subcategory of compact objects of T. The paper begins by setting up the required localisation theory. Benson and Krause [BK] showed that injective modules over the Tate cohomology ring of a finite group algebra kG, where k is a field of characteristic p and G is a p-group, correspond to certain pure-injective objects in the (compactly generated, triangulated) stable module category of kG. We generalise this to arbitrary compactly generated triangulated categories, replacing the trivial module k by any compact object and the Tate cohomology ring by the graded endomorphism ring of that object. We obtain the strongest results in the case that this graded endomorphism ring is coherent. Notation. If no confusion concerning the ring R or the category C is possible, we usually abbreviate HomR(X, Y ) or HomC(X, Y ) to (X, Y ) or C(X, Y ). -
Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories. -
Sheafification and Existence of Injectives
Sheacation and existence of injectives Marius Stekelenburg March 8, 2016 1 Sheacation In this section, we will discuss how a sheacation works on ANY small site. The presheaves we will discuss are presheaves of sets. But once this construc- tion is done, one can immediately guess how this would work on presheaves of (abelian) groups and of (commutative) rings. The sheacation will be done in two steps: rst we will turn presheaves into separated presheaves, and then we will turn separated presheaves into (actual) sheaves. 1.1 Separated sheaves Denition 1.1. Let C be a site. A presheaf on F on C is called separated if for any object U 2 C, and any covering (Ui)i, the restriction map F(U) ! Q is injective. i F(Ui) Denition 1.2. Let F be a presheaf on C. The separated presheaf associ- ated to F is a separated presheaf F s, equipped with a morphism F!F s satisfying the following universal property: for each morphism F!G with G being separated, there exists a unique F s !G such that the following triangle commutes: F F s G Theorem 1.3. The separated presheaf associated to F exists, and is given by F s(U) = F(U)= ∼, with s; t 2 F(U) being equivalent if there exists a covering such that for each . (Ui)i sjUi = tjUi i Proof. See Exercise 3:1. 1 1.2 Sheacation of separated sheaves From now on, we will assume C to be a small site. Denition 1.4. Let F be a presheaf on C. -
Lie Algebroid Cohomology As a Derived Functor
LIE ALGEBROID COHOMOLOGY AS A DERIVED FUNCTOR Ugo Bruzzo Area di Matematica, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy; Department of Mathematics, University of Pennsylvania, 209 S 33rd st., Philadelphia, PA 19104-6315, USA; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste Abstract. We show that the hypercohomology of the Chevalley-Eilenberg- de Rham complex of a Lie algebroid L over a scheme with coefficients in an L -module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie alge- broids. Contents 1. Introduction 2 2. Generalities on Lie algebroids 3 3. Cohomology as derived functor 7 4. A Hochshild-Serre spectral sequence 11 References 16 arXiv:1606.02487v4 [math.RA] 14 Apr 2017 Date: Revised 14 April 2017 2000 Mathematics Subject Classification: 14F40, 18G40, 32L10, 55N35, 55T05 Keywords: Lie algebroid cohomology, derived functors, spectral sequences Research partly supported by indam-gnsaga. u.b. is a member of the vbac group. 1 2 1. Introduction As it is well known, the cohomology groups of a Lie algebra g over a ring A with coeffi- cients in a g-module M can be computed directly from the Chevalley-Eilenberg complex, or as the derived functors of the invariant submodule functor, i.e., the functor which with ever g-module M associates the submodule of M M g = {m ∈ M | ρ(g)(m)=0}, where ρ: g → End A(M) is a representation of g (see e.g. [16]). In this paper we show an analogous result for the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme X, with coefficients in a representation M of L (the notion of hypercohomology is recalled in Section 2). -
2 Sheaves and Cohomology
2 Sheaves and Cohomology 2.1 Sheaves and Presheaves We fix a topological space X. Later we will include assumptions that are satisfied by smooth manifolds. 2.1.1 Definitions and Examples Definition 2.1. A presheaf of abelian groups F on X assigns to each open U ⊆ X an abelian group F (U) = Γ(U; F ) and for every inclusion of open sets V ⊆ U a homomorphism of abelian groups F ρUV : F (U) ! F (V ), often called the restriction map, satisfying F 1 [P1] ρUU = F(U) F F F [P2] for W ⊆ V ⊆ U, we have ρVW ◦ ρUV = ρUW . If F and G are two presheaves (of abelian groups) on X, then a morphism ' : F ! G consists of the data of a morphism 'U : F (U) ! G (U) for each open set U ⊆ X such that if V ⊆ U is an inclusion, then we have commutative diagrams 'U F (U) / G (U) F G ρUV ρUV (V ) / (V ): F 'V G Remark 2.2. We may form a category TopX whose objects are open sets in X and whose mor- phisms are simply inclusions of open sets. Then the above definition says that a presheaf is a ◦ contravariant functor TopX ! Ab, and that a morphism of presheaves is a natural transforma- tion of the associated functors. Definition 2.3. A sheaf F of abelian groups on X is a presheaf which, for any open set U ⊆ X and any open covering fUigi2I of U, satisfies the two additional properties: [S1] if s 2 F (U) is such that sjUi = 0 for all i 2 I, then s = 0; [S2] if si 2 F (Ui) such that sijUi\Uj = sjjUi\Uj for all i; j 2 I, then there exists s 2 F (U) such that sjUi = si for each i. -
Differential Geometry of Complex Vector Bundles
DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi This is re-typesetting of the book first published as PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN 15 DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi Kan^oMemorial Lectures 5 Iwanami Shoten, Publishers and Princeton University Press 1987 The present work was typeset by AMS-LATEX, the TEX macro systems of the American Mathematical Society. TEX is the trademark of the American Mathematical Society. ⃝c 2013 by the Mathematical Society of Japan. All rights reserved. The Mathematical Society of Japan retains the copyright of the present work. No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copy- right owner. Dedicated to Professor Kentaro Yano It was some 35 years ago that I learned from him Bochner's method of proving vanishing theorems, which plays a central role in this book. Preface In order to construct good moduli spaces for vector bundles over algebraic curves, Mumford introduced the concept of a stable vector bundle. This concept has been generalized to vector bundles and, more generally, coherent sheaves over algebraic manifolds by Takemoto, Bogomolov and Gieseker. As the dif- ferential geometric counterpart to the stability, I introduced the concept of an Einstein{Hermitian vector bundle. The main purpose of this book is to lay a foundation for the theory of Einstein{Hermitian vector bundles. We shall not give a detailed introduction here in this preface since the table of contents is fairly self-explanatory and, furthermore, each chapter is headed by a brief introduction. -
Perverse Sheaves Learning Seminar: Derived Categories and Its Applications to Sheaves
Perverse Sheaves Learning Seminar: Derived Categories and its Applications to Sheaves Yuguang (Roger) Bai October 6, 2018 1 Derived Categories Unless otherwise stated, let A be an abelian category. Denition 1.1. Let Ch(A ) be the category of chain complexes in A . Objects in this category are chain complexes A•, which is a sequence of objects and morphisms in A of the form i−1 i · · · −! Ai−1 d−! Ai −!d Ai+1 −! · · · satisfying di ◦ di−1 = 0 for every i 2 Z. A morphism • • between two complexes is a collection of morphisms i i i in f : A ! B f = (f : A ! B )i2Z such that i+1 i i i for every . A f ◦ dA = dB ◦ f i 2 Z Denition 1.2. A chain complex A• is said to be bounded above if there is an integer N such that Ai = 0 for all i > N. Similarly, A• is said to be bounded below if there is an integer N such that Ai = 0 for all i < N. A• is said to be bounded if it is bounded above and bounded below. Let Ch−(A ) (resp. Ch+(A ), Chb(A )) denote the full subcategory of Ch(A ) consisting of bounded- above (resp. bounded-below, bounded) complexes. Let Ch◦(A ) denote any of the four categories above. For a complex A•, let [1] : Ch(A ) ! Ch(A ) denote the shift functor where A[1]i = Ai−1. Denition 1.3. A quasi-isomorphism in Ch(A ) is a chain map f : A• ! B• such that the induced maps Hn(f): Hn(A) ! Hn(B) are isomorphisms for all n.