2 Sheaves and Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

2 Sheaves and Cohomology 2 Sheaves and Cohomology 2.1 Sheaves and Presheaves We fix a topological space X. Later we will include assumptions that are satisfied by smooth manifolds. 2.1.1 Definitions and Examples Definition 2.1. A presheaf of abelian groups F on X assigns to each open U ⊆ X an abelian group F (U) = Γ(U; F ) and for every inclusion of open sets V ⊆ U a homomorphism of abelian groups F ρUV : F (U) ! F (V ), often called the restriction map, satisfying F 1 [P1] ρUU = F(U) F F F [P2] for W ⊆ V ⊆ U, we have ρVW ◦ ρUV = ρUW . If F and G are two presheaves (of abelian groups) on X, then a morphism ' : F ! G consists of the data of a morphism 'U : F (U) ! G (U) for each open set U ⊆ X such that if V ⊆ U is an inclusion, then we have commutative diagrams 'U F (U) / G (U) F G ρUV ρUV (V ) / (V ): F 'V G Remark 2.2. We may form a category TopX whose objects are open sets in X and whose mor- phisms are simply inclusions of open sets. Then the above definition says that a presheaf is a ◦ contravariant functor TopX ! Ab, and that a morphism of presheaves is a natural transforma- tion of the associated functors. Definition 2.3. A sheaf F of abelian groups on X is a presheaf which, for any open set U ⊆ X and any open covering fUigi2I of U, satisfies the two additional properties: [S1] if s 2 F (U) is such that sjUi = 0 for all i 2 I, then s = 0; [S2] if si 2 F (Ui) such that sijUi\Uj = sjjUi\Uj for all i; j 2 I, then there exists s 2 F (U) such that sjUi = si for each i. Note that such an element is unique by [S1]. A morphism of sheaves is a morphism of the underlying presheaves. Let A be a sheaf of rings on X, i.e. one for which A (U) is a ring for each open U ⊆ X and for which the restriction maps are ring homomorphisms. If F is a sheaf of abelian groups such that for every open U ⊆ X, F (U) is an A (U)-module, then F is called a sheaf of A -modules. Examples 2.4. (a) The constant presheaf Let X be a topological space and let A be an abelian p group. We define the constant presheaf with values in A to be the presheaf AX to be the presheaf such that p AX (U) = A Ap X 1 for all non-empty U ⊆ X, and ρUV = A for all V ⊆ U. (b) The constant sheaf With X and A as above, we define the constant sheaf with values in A to be the sheaf AX whose sections AX (U) over U are locally constant functions U ! A; this is the same as the set of continuous functions U ! A, where A is given the discrete topology. 1 0 0 0 (c) Functions Let C = CX be the sheaf for which C (U) is the set of continuous R-valued functions on U. Then C0 is a sheaf. Similarly, if X is a smooth (respectively, complex) mani- 1 1 fold, then CX (respectively, OX ) is a sheaf, where CX (U) (respectively, OX (U)) is the ring of smooth (respectively, holomorphic) functions on U. These are all sheaves of rings. (d) Skyscraper sheaves Let X and A be as above, and fix x 2 X. Then we can define a sheaf Ax by ( A if x 2 U Ax(U) := 0 otherwise. 0 In the case that that A = C, then Cx is a sheaf of CX -modules, where a function acts on a section simply by multiplying by its value at x. (e) Vector bundles Let X be as above and let π : E ! X be a vector bundle over X. Then for any U ⊆ X, U 7! Γ(U; E) defines a sheaf. For a vector bundle E, we will typically also denote its sheaf of sections by E, as no confusion is likely to occur. By Remark , E is a sheaf of C0-modules; it is a sheaf of 1 CX -modules or OX -modules if E is smooth or holomorphic, respectively. 2.1.2 Stalks We first recall the notion of a colimit. Definition 2.5. Let I be a small category (i.e., Ob I is a set) and C any category. Let α : I ! C be a functor; we thus, think of this data as a set of objects of C indexed by I , with morphisms between these objects indexed by morphisms in I . Any object X 2 Ob C determines such a functor ∆X : I ! C , namely, the constant functor, i.e., ∆X takes all objects of I to X and all morphisms to 1X . If Y 2 Ob C is another object and f : X ! Y a morphism, then there is an induced natural transformation Φ = Φf : ∆X ! ∆Y which is simply f at each object of I . We say that α has a colimit X 2 Ob C if there is a natural transformation λ : α ! ∆X such that if Y 2 Ob C and τ : α ! ∆Y is a natural transformation, then there is a unique f : X ! Y such that α λ τ τ = Φf ◦ λ. Ó ∆X / ∆Y Φf commutes. [The colimit is often called the “direct limit,” but for the sake of standardizing lan- guage, “colimit” is preferable.] It is not hard to see that if a colimit exists, then it is unique up to a unique isomorphism. Lemma 2.6. If I is a small category and α : I ! Ab is an functor, then colim α exists. L Proof. For i 2 Ob I , we will write Xi for α(i). Then let Xe := i2Ob I Xi be the direct sum and let N ⊆ Xe be the subgroup generated by elements of the form (··· ; 0; xi; ··· ; −α(f)(xi); ··· ) for morphisms f : i ! j. It is left as an exercise to show that X := X=Ne is the colimit. L Remark 2.7. From the construction above, any element of colim α is a tuple in Xi with finitely many non-zero components, corresponding to i1; : : : ; ir 2 Ob I . Suppose that for any such i1; : : : ; ir, there is j 2 Ob I with arrows ip ! j for 1 ≤ p ≤ r. Then by using the relation in the proof above, one can represent any element of colim α by one in the image of Xj ! X. 2 Let X be a topological space and fix a point x 2 X. Recall that TopX was the category whose objects are open sets in X and whose morphisms are inclusions. Consider the (full) subcategory ◦ TopX;x whose objects are open neighbourhoods of x. It is easy to see that TopX;x has the property mentioned in Remark 2.7, since the intersection of any finite set of open neighbourhoods of x is also one. ◦ Now, if F is a presheaf, which we may think of as a functor F : TopX ! Ab, then we can ◦ restrict it to F : TopX;x ! Ab. By Lemma 2.6, Fx := colimTopX;x F = colimx2U F (U) exists; we call it the stalk of F at x. By properties of the colimit, for each open neighbourhood U of x, we have a natural map F (U) ! Fx and these “are compatible” with the restriction maps. Remark 2.7 says that any element of Fx is the image of some s 2 F (U) for some neighbourhood U of x. We may repeat the above definition for an arbitrary set S ⊆ X, instead of fxg, by defining the subcategory TopX;S of TopX with objects open sets U ⊆ X with S ⊆ U. In this way, we can extend the presheaf F to all subsets of X by F (S) := colimS⊆U F (U): 2.2 Sheafification Proposition 2.8. Let F be a presheaf on X. Then there exists a sheaf F + together with a mor- phism θ : F ! F + such that if ' : F ! G is any morphism and G is a sheaf, then there is a unique morphism Φ: F + ! G such that F + θ 8 F Φ ' = Φ ◦ θ ' & G commutes. Definition 2.9. The sheaf F + is called the sheafification of F . Remark 2.10. If F is a sheaf, then θ : F ! F + is an isomorphism. Proof. We define F + as follows. Let U ⊆ X be open. We let F +(U) be the set of elements Y σ 2 Fx x2U such that for each x 2 U there is an open neighbourhood V of x contained in U and a section s 2 F (V ) such that pry(σ) = sy for all y 2 V , where pry is the obvious projection map. We leave it as an exercise to show that this is a sheaf. Q Given s 2 F (U), there is a unique σ 2 x2U Fx, where prx(σ) = sx; clearly, we have σ 2 F +(U) and so we set θU (s) := σ: It is an exercise to verify that this defines θ. Finally, we also leave as an exercise the proof of the mapping property. 3 2.3 Kernels and Images Definition 2.11. If F is a presheaf, then a subpresheaf G of F is a presheaf for which G (U) is a subgroup of F (U) for all open U ⊆ X and for which the restriction morphisms are induced from those of F .A subsheaf of a sheaf is simply a subpresheaf which is also a sheaf.
Recommended publications
  • The Calabi Complex and Killing Sheaf Cohomology
    The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality...................
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • Sheaf Theory
    Sheaf Theory Anne Vaugon December 20, 2013 The goals of this talk are • to define a generalization denoted by RΓ(F) of de Rham cohomology; • to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived functor). 1 Presheaves and sheaves 1.1 Definitions and examples Let X be a topological space. Definition 1.1. A presheaf of k-modules F on X is defined by the following data: • a k-module F(U) for each open set U of X; • a map rUV : F(U) → F(V ) for each pair V ⊂ U of open subsets such that – rWV ◦ rVU = rWU for all open subsets W ⊂ V ⊂ U; – rUU = Id for all open subsets U. Therefore, a presheaf is a functor from the opposite category of open sets to the category of k-modules. If F is a presheaf, F(U) is called the set of sections of U and rVU the restriction from U to V . Definition 1.2. A presheaf F is a sheaf if • for any family (Ui)i∈I of open subsets of X • for any family of elements si ∈ F(Ui) such that rUi∩Uj ,Ui (si) = rUi∩Uj ,Uj (sj) for all i, j ∈ I there exists a unique s ∈ F(U) where U = ∪i∈I Ui such that rUi,U (s) = si for all i ∈ I. This means that we can extend a locally defined section. Definition 1.3. A morphism of presheaves f : F → G is a natural trans- formation between the functors F and G: for each open set U, there exists a morphism f(U): F(U) → G(U) such that the following diagram is commutative for V ⊂ U.
    [Show full text]
  • A Algebraic Varieties
    A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
    On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories.
    [Show full text]
  • On Sheaf Theory
    Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G).
    [Show full text]
  • Differential Geometry of Complex Vector Bundles
    DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi This is re-typesetting of the book first published as PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN 15 DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi Kan^oMemorial Lectures 5 Iwanami Shoten, Publishers and Princeton University Press 1987 The present work was typeset by AMS-LATEX, the TEX macro systems of the American Mathematical Society. TEX is the trademark of the American Mathematical Society. ⃝c 2013 by the Mathematical Society of Japan. All rights reserved. The Mathematical Society of Japan retains the copyright of the present work. No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copy- right owner. Dedicated to Professor Kentaro Yano It was some 35 years ago that I learned from him Bochner's method of proving vanishing theorems, which plays a central role in this book. Preface In order to construct good moduli spaces for vector bundles over algebraic curves, Mumford introduced the concept of a stable vector bundle. This concept has been generalized to vector bundles and, more generally, coherent sheaves over algebraic manifolds by Takemoto, Bogomolov and Gieseker. As the dif- ferential geometric counterpart to the stability, I introduced the concept of an Einstein{Hermitian vector bundle. The main purpose of this book is to lay a foundation for the theory of Einstein{Hermitian vector bundles. We shall not give a detailed introduction here in this preface since the table of contents is fairly self-explanatory and, furthermore, each chapter is headed by a brief introduction.
    [Show full text]
  • Arithmetic Fundamental Group
    Arithmetic Fundamental Group Andrew Kobin Spring 2017 Contents Contents Contents 0 Introduction 1 0.1 Topology Review . .1 0.2 Finite Etale´ Algebras . .4 0.3 Locally Constant Sheaves . .5 0.4 Etale´ Morphisms . .8 1 Fundamental Groups of Algebraic Curves 11 1.1 Curves Over Algebraically Closed Fields . 11 1.2 Curves Over Arbitrary Fields . 12 1.3 Proper Normal Curves . 15 1.4 Finite Branched Covers . 16 1.5 The Fundamental Group of Curves . 22 1.6 The Outer Galois Action . 25 1.7 The Inverse Galois Problem . 30 2 Riemann's Existence Theorem 36 2.1 Riemann Surfaces . 36 2.2 The Existence Theorem over 1 ......................... 42 PC 2.3 The General Case . 48 2.4 The Analytic Existence Theorem . 50 3 Scheme Theory 54 3.1 Affine Schemes . 54 3.2 Schemes . 56 3.3 Properties of Schemes . 58 3.4 Sheaves of Modules . 64 3.5 Group Schemes . 70 4 Fundamental Groups of Schemes 73 4.1 Galois Theory for Schemes . 74 4.2 The Etale´ Fundamental Group . 78 4.3 Properties of the Etale´ Fundamental Group . 81 4.4 Structure Theorems . 84 4.5 Specialization and Characteristic p Results . 87 i 0 Introduction 0 Introduction The following notes are taken from a reading course on ´etalefundamental groups led by Dr. Lloyd West at the University of Virginia in Spring 2017. The contents were presented by stu- dents throughout the course and mostly follow Szamuely's Galois Groups and Fundamental Groups. Main topics include: A review of covering space theory in topology (universal covers, monodromy, locally constant sheaves) Covers and ramified covers of normal curves The algebraic fundamental group for curves An introduction to schemes Finite ´etalecovers of schemes and the ´etalefundamental group Grothendieck's main theorems for the fundamental group of a scheme Applications.
    [Show full text]
  • Etale Cohomology of Curves
    ETALE COHOMOLOGY OF CURVES SIDDHARTH VENKATESH Abstract. These are notes for a talk on the etale cohomology of curves given in a grad student seminar on etale cohomology held in Spring 2016 at MIT. The talk follows Chapters 13 and 14 of Milne ([Mil3]). Contents 1. Outline of Talk 1 2. The Kummer Exact Sequence 2 3. Cohomology of Gm 4 4. Cohomology of µn 7 4.1. For Projective Curves 7 4.2. Lefschetz Trace Formula and Rationality of Zeta Function 7 4.3. For Affine Curves 10 5. Compactly Supported Cohomology for Curves 10 6. Poincare Duality 11 6.1. Local Systems in the Etale Topology 11 6.2. Etale Fundamental Group 11 6.3. The Duality Statement 13 7. Curves over Finite Fields 17 7.1. Hochschild-Serre Spectral Sequence 17 7.2. Poincare Duality 17 References 18 1. Outline of Talk The main goal of this talk is to prove a Poincare duality result for smooth curves over algebraically closed fields. Eventually, we will want to get a similar result for higher dimensional varieties as well but for now, we only have the machinery to deal with curves. Let me begin by recalling how Poincare duality works for smooth varieties of dimension n over C. In the analytic topology, we have a perfect pairing r 2n−r 2n H (X; Z) × Hc (X; Z) ! H (X; Z) = Z: More generally, you can replace the sheaf Z with any locally constant sheaf F to get a perfect pairing r 2n−r H (X; F) × H (X; Fˇ(1)) ! Z where Fˇ(1) = Hom(F; Z): This cannot be done in the Zariski topology because the topolgy is contractible (if the variety is irreducible).
    [Show full text]
  • Perverse Sheaves Learning Seminar: Derived Categories and Its Applications to Sheaves
    Perverse Sheaves Learning Seminar: Derived Categories and its Applications to Sheaves Yuguang (Roger) Bai October 6, 2018 1 Derived Categories Unless otherwise stated, let A be an abelian category. Denition 1.1. Let Ch(A ) be the category of chain complexes in A . Objects in this category are chain complexes A•, which is a sequence of objects and morphisms in A of the form i−1 i · · · −! Ai−1 d−! Ai −!d Ai+1 −! · · · satisfying di ◦ di−1 = 0 for every i 2 Z. A morphism • • between two complexes is a collection of morphisms i i i in f : A ! B f = (f : A ! B )i2Z such that i+1 i i i for every . A f ◦ dA = dB ◦ f i 2 Z Denition 1.2. A chain complex A• is said to be bounded above if there is an integer N such that Ai = 0 for all i > N. Similarly, A• is said to be bounded below if there is an integer N such that Ai = 0 for all i < N. A• is said to be bounded if it is bounded above and bounded below. Let Ch−(A ) (resp. Ch+(A ), Chb(A )) denote the full subcategory of Ch(A ) consisting of bounded- above (resp. bounded-below, bounded) complexes. Let Ch◦(A ) denote any of the four categories above. For a complex A•, let [1] : Ch(A ) ! Ch(A ) denote the shift functor where A[1]i = Ai−1. Denition 1.3. A quasi-isomorphism in Ch(A ) is a chain map f : A• ! B• such that the induced maps Hn(f): Hn(A) ! Hn(B) are isomorphisms for all n.
    [Show full text]