On Sheaf Theory

Total Page:16

File Type:pdf, Size:1020Kb

On Sheaf Theory Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G). Sheaves were originally introduced by Leray in Comptes Rendus 222(1946)p. 1366 and the modified definition of sheaves now used was given by Lazard, and appeared first in the Cartan Sem. 1950-51 Expose 14. In the definition of a sheaf, X is not assumed to satisfy any separation axioms. S is called the sheaf space, π the projection map, and X the base space. The open sets of S which project homeomorphically onto open sets of X form a base for the open sets of S . Proof. If p is in an open set H, there exists an open G, p ∈ G such that π|G maps G homeomorphically onto an open set π(G). Then H ∩ G is open, p ∈ H ∩G ⊂ H, and η|H ∩G maps H ∩G homeomorphically onto π(H ∩ G) open in π(G), hence open in X. 1 2 Lecture 1 2 π is a continuous open mapping Proof. Continuity of π follows from the fact that it is a local homeomor- phism, and openness follows from the result proved above. −1 The set S x = π (x) is called the stalk of S at x. S x is an abelian group. If π(p) , π(q), p + q is not defined. S x has the discrete topology. Proof. This is a consequence of the fact that π is a local homeomor- phism. Let S × S be the cartesian product of the space S with itself and let S + S be the subspace consisting of those pairs (p, q) for which π(p) = π(q). Addition is continuous means that f : S + S → S defined by f (p, q) = p+q is continuous. In other words, if p, q ∈ S and π(p) = π(q), then given an open G containing p + q, there exist open sets H, K with p ∈ H, q ∈ K such that if r ∈ H, s ∈ K and π(r) = π(s), then r + s ∈ G. We may write this as H + K ⊂ G. Proposition 1. Zero and inverse are continuous. (i) Writing Ox for the zero element of the group S x, zero is continuous means that f : X → S , where f (x) = Ox, is continuous. Proof. Let x ∈ X and let G be an open set containing f (x) = Ox. Then there is an open set G1 such that Ox ∈ G1 ⊂ G and π|G1 is a 3 homeomorphism of G1 onto open π(G1). Since Ox + Ox = Ox, and addition is continuous, there exist open sets H, K with Ox ∈ H, Ox ∈ K such that H + K ⊂ G1. Let L = G1 ∩ H ∩ K, then L is open, Ox ∈ L and π|L is a homeomorphism of L onto open π(L). Then x = π(Ox) ∈ π(L) and if y ∈ π(L) there exists q ∈ L with π(q) = y. Then q ∈ H, q ∈ K and hence q + q ∈ G1. But q ∈ G1, and π|G1 is 1−1; hence q = S y∩G1. Therefore, since q+q ∈ S y ∩G1, q+q = q, hence q = Oy. Thus if y ∈ π(L), f (y) = Oy ∈ L. Thus x is in open π(L), with f (π(L)) = L ⊂ G. Hence f is continuous. (Incidentally we have proved that each Ox is contained in an open set which Lecture 1 3 consists of zeros only and which projects homeomorphically onto an open set of X.) (ii) Writing-p for the inverse of p in the group S π(p) inverse is contin- uous means that g : S → S where g(p) = −p is continuous. Proof. Let p ∈ S , and let G be an open set containing-p. Then there exists open L containing Oπ(p) and consisting of zeros only. Since p+(−p) = Oπ(p) and addition is continuous, there exist open H, K, with p ∈ H, −p ∈ K and H + K ⊂ L. Hence if q ∈ H, r ∈ K, π(r) = π(q), then q + r = Oπ(q), i.e. r = −q. We may assume that π|H is a homeomorphism. Let 1 H1 = (π|H) (π(H) ∩ π(K ∩ G)), then p ∈ H1, and since π is open, continuous, H1 is open. Then if q ∈ H1, there exists r ∈ K∩G with π(r) = π(q); then r = −q = g(q). 4 Thus H1 is open and g(H1) ⊂ G. Hence g is continuous. Corollary 1. Subtraction is continuous. i.i. f : S + S → S , where f (p, q) = p − q is continuous. Corollary 2. The set of all zeros is an open set. Example 1. If X is a topological space, and G is an abelian group fur- nished with the discrete topology, let S = (X × G,π, X) where π(x, g) = x and (x, g1) + (x, g2) = (x, g1 + g2). Each stalk S x is isomorphic to G. Axioms a) and c) are easily verified. This sheaf is called the constant sheaf associated with G. Example 2. Form the constant sheaf (A × Z,π, A) where A is the square {(x, y) : 0 ≤ x ≤ 1, 0 ≤ 0 ≤ y ≤ 1}, and Z is the group of integers. Then identify (x, 0) with (1 − x, 1) in A to get a M¨obius band X, and identify (x, 0, n) with (1 − x, 1, −n) in A × Z to get S . The resulting sheaf S = (S,π, X) is the sheaf of “twisted integers” over the M¨obius band. Each S x is isomorphic to the group of integers. 4 Lecture 1 Example 3. Let X be the sphere of complex numbers. Let S x be the additive group of function elements at x, each function element being a power series converging in some neighbourhood of x. Let S = ∪xS x 5 and define π : S → X by π(S x) = x. If p is a function element, a neighbourhood of p in S is defined by analytic continuation. Then S = (S,π, X) is the sheaf of analytic function elements. Each component (maximal connected subset) of S is a Riemann surface without branch points. The sheaf space S is Hansdorff. Lecture 2 Example 4. Let S : {(x, y) : x2 + y2 = 1, x < 1} together with the group 6 of integers Z}. The topology on the former set is the usual induced topology, and the neighbourhoods for an integer n ∈ Z are given by 2 2 2 2 Ga(n) = {n, (x, y) : x + y = 1, a < x < 1}; X : {(x, y) : x + y = 1} and let π : S → X be defined by π(n) = (1, 0), π(x, y) = (x, y). π−1(1, 0) is the group Z, for other pints (x, y) ∈ X, π−1(x, y) = (x, y) is regarded as the zero group. It is easily verified that S = (s,π, X) is a sheaf. Here S is locally euclidean, and has a countable base. The set of all zeros is open (Corollary 2) and compact but not closed; its closure is not compact, S is T1 but not Hausdorff though X is Hausdorff. Exercise. If X is a To or a T1 space, space, so is S So far we have only defined sheaves of abelian groups. It is now quite clear how we can extend the definition to the case where the stalks are any algebraic systems. A sheaf of rings is a local homeomorphism π : S → X such that each π−1(x) is a ring and addition and multiplication are continuous, i.e f : S + S → S where f (p, q) = p + q, g : S + S → S where g(p, q) = p · q, are continuous. The sheaf of function elements (Example 3) where multiplication 7 of two function elements in the same stalk is defined to be the usual multiplication of power series is a sheaf of rings. In the sheaf of twisted integers (Example 2) each S x is isomorphic to the ring Z, but this sheaf is not a sheaf of rings. 5 6 Lecture 2 A sheaf of rings with unit is a local homeomorphism π : S → X −1 such that each π (x) is a ring with unit element 1x and addition, multi- plication and unit are continuous; i,e., f : S + S → S, f (p, q) = p + q, g : S + S → S, f (p, q) = p · q, h : X −→ S,h(x) = 1x are continuous.
Recommended publications
  • Math 5853 Homework Solutions 36. a Map F : X → Y Is Called an Open
    Math 5853 homework solutions 36. A map f : X → Y is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map. 1. Give examples of continuous maps from R to R that are open but not closed, closed but not open, and neither open nor closed. open but not closed: f(x) = ex is a homeomorphism onto its image (0, ∞) (with the logarithm function as its inverse). If U is open, then f(U) is open in (0, ∞), and since (0, ∞) is open in R, f(U) is open in R. Therefore f is open. However, f(R) = (0, ∞) is not closed, so f is not closed. closed but not open: Constant functions are one example. We will give an example that is also surjective. Let f(x) = 0 for −1 ≤ x ≤ 1, f(x) = x − 1 for x ≥ 1, and f(x) = x+1 for x ≤ −1 (f is continuous by “gluing together on a finite collection of closed sets”). f is not open, since (−1, 1) is open but f((−1, 1)) = {0} is not open. To show that f is closed, let C be any closed subset of R. For n ∈ Z, −1 −1 define In = [n, n + 1]. Now, f (In) = [n + 1, n + 2] if n ≥ 1, f (I0) = [−1, 2], −1 −1 f (I−1) = [−2, 1], and f (In) = [n − 1, n] if n ≤ −2.
    [Show full text]
  • A NOTE on COMPLETE RESOLUTIONS 1. Introduction Let
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 11, November 2010, Pages 3815–3820 S 0002-9939(2010)10422-7 Article electronically published on May 20, 2010 A NOTE ON COMPLETE RESOLUTIONS FOTINI DEMBEGIOTI AND OLYMPIA TALELLI (Communicated by Birge Huisgen-Zimmermann) Abstract. It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using com- plete resolutions. It is also shown that for an LHF-group G the kernels in a complete resolution of a ZG-module coincide with Benson’s class of cofibrant modules. 1. Introduction Let G be a group and ZG its integral group ring. A ZG-module M is said to admit a complete resolution (F, P,n) of coincidence index n if there is an acyclic complex F = {(Fi,ϑi)| i ∈ Z} of projective modules and a projective resolution P = {(Pi,di)| i ∈ Z,i≥ 0} of M such that F and P coincide in dimensions greater than n;thatis, ϑn F : ···→Fn+1 → Fn −→ Fn−1 → ··· →F0 → F−1 → F−2 →··· dn P : ···→Pn+1 → Pn −→ Pn−1 → ··· →P0 → M → 0 A ZG-module M is said to admit a complete resolution in the strong sense if there is a complete resolution (F, P,n)withHomZG(F,Q) acyclic for every ZG-projective module Q. It was shown by Cornick and Kropholler in [7] that if M admits a complete resolution (F, P,n) in the strong sense, then ∗ ∗ F ExtZG(M,B) H (HomZG( ,B)) ∗ ∗ where ExtZG(M, ) is the P-completion of ExtZG(M, ), defined by Mislin for any group G [13] as k k−r r ExtZG(M,B) = lim S ExtZG(M,B) r>k where S−mT is the m-th left satellite of a functor T .
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • How to Make Free Resolutions with Macaulay2
    How to make free resolutions with Macaulay2 Chris Peterson and Hirotachi Abo 1. What are syzygies? Let k be a field, let R = k[x0, . , xn] be the homogeneous coordinate ring of Pn and let X be a projective variety in Pn. Consider the ideal I(X) of X. Assume that {f0, . , ft} is a generating set of I(X) and that each polynomial fi has degree di. We can express this by saying that we have a surjective homogenous map of graded S-modules: t M R(−di) → I(X), i=0 where R(−di) is a graded R-module with grading shifted by −di, that is, R(−di)k = Rk−di . In other words, we have an exact sequence of graded R-modules: Lt F i=0 R(−di) / R / Γ(X) / 0, M |> MM || MMM || MMM || M& || I(X) 7 D ppp DD pp DD ppp DD ppp DD 0 pp " 0 where F = (f0, . , ft). Example 1. Let R = k[x0, x1, x2]. Consider the union P of three points [0 : 0 : 1], [1 : 0 : 0] and [0 : 1 : 0]. The corresponding ideals are (x0, x1), (x1, x2) and (x2, x0). The intersection of these ideals are (x1x2, x0x2, x0x1). Let I(P ) be the ideal of P . In Macaulay2, the generating set {x1x2, x0x2, x0x1} for I(P ) is described as a 1 × 3 matrix with gens: i1 : KK=QQ o1 = QQ o1 : Ring 1 -- the class of all rational numbers i2 : ringP2=KK[x_0,x_1,x_2] o2 = ringP2 o2 : PolynomialRing i3 : P1=ideal(x_0,x_1); P2=ideal(x_1,x_2); P3=ideal(x_2,x_0); o3 : Ideal of ringP2 o4 : Ideal of ringP2 o5 : Ideal of ringP2 i6 : P=intersect(P1,P2,P3) o6 = ideal (x x , x x , x x ) 1 2 0 2 0 1 o6 : Ideal of ringP2 i7 : gens P o7 = | x_1x_2 x_0x_2 x_0x_1 | 1 3 o7 : Matrix ringP2 <--- ringP2 Definition.
    [Show full text]
  • The Calabi Complex and Killing Sheaf Cohomology
    The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality...................
    [Show full text]
  • Special Sheaves of Algebras
    Special Sheaves of Algebras Daniel Murfet October 5, 2006 Contents 1 Introduction 1 2 Sheaves of Tensor Algebras 1 3 Sheaves of Symmetric Algebras 6 4 Sheaves of Exterior Algebras 9 5 Sheaves of Polynomial Algebras 17 6 Sheaves of Ideal Products 21 1 Introduction In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow noncommutative sheaves of rings, but if we say (X, OX ) is a ringed space then we mean OX is a sheaf of commutative rings. Throughout this note (X, OX ) is a ringed space. Associated to this ringed space are the following categories: Mod(X), GrMod(X), Alg(X), nAlg(X), GrAlg(X), GrnAlg(X) We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con- structions respectively. 2 Sheaves of Tensor Algebras Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX (U)-algebra given by the tensor algebra T (F (U)). That is, ⊗2 P (U) = OX (U) ⊕ F (U) ⊕ F (U) ⊕ · · · For an inclusion V ⊆ U let ρ : OX (U) −→ OX (V ) and η : F (U) −→ F (V ) be the morphisms of abelian groups given by restriction. For n ≥ 2 we define a multilinear map F (U) × · · · × F (U) −→ F (V ) ⊗ · · · ⊗ F (V ) (m1, .
    [Show full text]
  • Sheaf Theory
    Sheaf Theory Anne Vaugon December 20, 2013 The goals of this talk are • to define a generalization denoted by RΓ(F) of de Rham cohomology; • to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived functor). 1 Presheaves and sheaves 1.1 Definitions and examples Let X be a topological space. Definition 1.1. A presheaf of k-modules F on X is defined by the following data: • a k-module F(U) for each open set U of X; • a map rUV : F(U) → F(V ) for each pair V ⊂ U of open subsets such that – rWV ◦ rVU = rWU for all open subsets W ⊂ V ⊂ U; – rUU = Id for all open subsets U. Therefore, a presheaf is a functor from the opposite category of open sets to the category of k-modules. If F is a presheaf, F(U) is called the set of sections of U and rVU the restriction from U to V . Definition 1.2. A presheaf F is a sheaf if • for any family (Ui)i∈I of open subsets of X • for any family of elements si ∈ F(Ui) such that rUi∩Uj ,Ui (si) = rUi∩Uj ,Uj (sj) for all i, j ∈ I there exists a unique s ∈ F(U) where U = ∪i∈I Ui such that rUi,U (s) = si for all i ∈ I. This means that we can extend a locally defined section. Definition 1.3. A morphism of presheaves f : F → G is a natural trans- formation between the functors F and G: for each open set U, there exists a morphism f(U): F(U) → G(U) such that the following diagram is commutative for V ⊂ U.
    [Show full text]
  • Depth, Dimension and Resolutions in Commutative Algebra
    Depth, Dimension and Resolutions in Commutative Algebra Claire Tête PhD student in Poitiers MAP, May 2014 Claire Tête Commutative Algebra This morning: the Koszul complex, regular sequence, depth Tomorrow: the Buchsbaum & Eisenbud criterion and the equality of Aulsander & Buchsbaum through examples. Wednesday: some elementary results about the homology of a bicomplex Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. We say that F· is a resolution of the A-module A/a Claire Tête Commutative Algebra I will begin with a little example.
    [Show full text]
  • The Smooth Locus in Infinite-Level Rapoport-Zink Spaces
    The smooth locus in infinite-level Rapoport-Zink spaces Alexander Ivanov and Jared Weinstein February 25, 2020 Abstract Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let M8 be an infinite-level Rapoport-Zink space of ˝ ˝ EL type, and let M8 be one connected component of its geometric fiber. We show that M8 contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve Xpp8q˝ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms. 1 Main theorem Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor- phisms + level structure). In particular we consider the infinite-level spaces MD;8, which are preperfectoid spaces [SW13]. An example is the space MH;8, where H{Fp is a p-divisible group of height n. The points of MH;8 over a nonarchimedean field K containing W pFpq are in correspondence with isogeny classes of p-divisible groups G{O equipped with a quasi-isogeny G b O {p Ñ H b O {p and an isomorphism K OK K Fp K n Qp – VG (where VG is the rational Tate module).
    [Show full text]
  • Bertini's Theorem on Generic Smoothness
    U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Arxiv:1307.5568V2 [Math.AG]
    PARTIAL POSITIVITY: GEOMETRY AND COHOMOLOGY OF q-AMPLE LINE BUNDLES DANIEL GREB AND ALEX KURONYA¨ To Rob Lazarsfeld on the occasion of his 60th birthday Abstract. We give an overview of partial positivity conditions for line bundles, mostly from a cohomological point of view. Although the current work is to a large extent of expository nature, we present some minor improvements over the existing literature and a new result: a Kodaira-type vanishing theorem for effective q-ample Du Bois divisors and log canonical pairs. Contents 1. Introduction 1 2. Overview of the theory of q-ample line bundles 4 2.1. Vanishing of cohomology groups and partial ampleness 4 2.2. Basic properties of q-ampleness 7 2.3. Sommese’s geometric q-ampleness 15 2.4. Ample subschemes, and a Lefschetz hyperplane theorem for q-ample divisors 17 3. q-Kodaira vanishing for Du Bois divisors and log canonical pairs 19 References 23 1. Introduction Ampleness is one of the central notions of algebraic geometry, possessing the extremely useful feature that it has geometric, numerical, and cohomological characterizations. Here we will concentrate on its cohomological side. The fundamental result in this direction is the theorem of Cartan–Serre–Grothendieck (see [Laz04, Theorem 1.2.6]): for a complete arXiv:1307.5568v2 [math.AG] 23 Jan 2014 projective scheme X, and a line bundle L on X, the following are equivalent to L being ample: ⊗m (1) There exists a positive integer m0 = m0(X, L) such that L is very ample for all m ≥ m0. (2) For every coherent sheaf F on X, there exists a positive integer m1 = m1(X, F, L) ⊗m for which F ⊗ L is globally generated for all m ≥ m1.
    [Show full text]