THAN YOU NEED to KNOW ABOUT EXT GROUPS If a and G Are

Total Page:16

File Type:pdf, Size:1020Kb

THAN YOU NEED to KNOW ABOUT EXT GROUPS If a and G Are MORE THAN YOU NEED TO KNOW ABOUT EXT GROUPS If A and G are abelian groups, then Ext(A; G) is an abelian group. Like Hom(A; G), it is a covariant functor of G and a contravariant functor of A. If we generalize our point of view a little so that now A and G are R-modules for some ring R, then n 0 we get not two functors but a whole sequence, ExtR(A; G), with ExtR(A; G) = HomR(A; G). In 1 n the special case R = Z, module means abelian group and ExtR is called Ext and ExtR is trivial for n > 1. I will explain the definition and some key properties in the case of general R. To be definite, let's suppose that R is an associative ring with 1, and that module means left module. If A and G are two modules, then the set HomR(A; G) of homomorphisms (or R-linear maps) A ! G has an abelian group structure. (If R is commutative then HomR(A; G) can itself be viewed as an R-module, but that's not the main point.) We fix G and note that A 7! HomR(A; G) is a contravariant functor of A, a functor from R-modules ∗ to abelian groups. As long as G is fixed, we sometimes denote HomR(A; G) by A . The functor also takes sums of morphisms to sums of morphisms, and (therefore) takes the zero map to the zero map and (therefore) takes trivial object to trivial object. Thus, given an exact sequence A ! B ! C we get a sequence A∗ B∗ C∗ of groups and homomorphisms in which the composition is again zero. We may ask whether the new sequence is exact. The answer is no in general, but it is yes if C is trivial. In other words, the dualization functor takes surjections to injections. It is also yes if B ! C is surjective; in other words an exact sequence A ! B ! C ! 0 yields an exact sequence A∗ B∗ C∗ 0: It is also yes if A ! B is a split injection. Thus a split exact sequence 0 ! A ! B ! C ! 0 yields a (split) exact sequence 0 A∗ B∗ C∗ 0: Free resolutions: If A is an R-module, then it is always possible to make an exact sequence of modules 0 A F0 F1 F2 ::: in which each module Fn is free. In order to do so, we first make a free module F0 having a basis big enough to map onto a generating set of A, then make a free module F1 having a basis big enough to map onto a generating set of the kernel of F0 ! A, then make a free module F2 having a basis big enough to map onto a generating set of the kernel of F1 ! F0, and so on. 1 Of course, in the case when R = Z it is always possible to choose the resolution in such a way that Fn is trivial for all n > 1, because after choosing F0 and a surjection F0 ! A we are free to choose F1 to be the kernel. (This works because in this case submodules of free modules are always free.) Say that such a free resolution has length one. In the case when R is a field, all modules are free and we can do even better and make a free resolution of length zero: F0 = A and Fn = 0 for all n > 0. Here is an example where a free resolution must have length greater than one: Let R be the polynomial ring Z[T ]. Let A be the groupZ=p for some prime p, made into an R-module by setting T x = 0 for all x 2 A. Here is a free resolution of length two: 0 Z=p Ra Rb ⊕ Rc Rd 0 Ra means a free R-module with basis element consiting of one element a. The maps are a 7! 1; b 7! pa; c 7! T a; d 7! T b − pc: We will see below that no shorter free resolution is possible. (There are also cases when a free resolution of infinite length is required.) Note that when you have a free resolution then ::: 0 F0 F1 F2 ::: ∼ is a chain complex F• of free modules and that \its homology is A" in the sense that H0(F•) = A while Hn(F•) = 0 for all other n ∗ Applying the functor Hom(−;G) to this chain complex of modules, we get a cochain complex F• of abelian groups ∗ ∗ ∗ ::: ! 0 ! F0 ! F1 ! F2 ! ::: The main thing we want to do is show that the cohomology of this complex is independent, up to isomorphism, of the choice of free resolution. The key is the following lemma: 0 0 0 LEMMA If F• is a free resolution of A and F• is a free resolution of A and h : A ! A is a map, ~ 0 then (existence) there exists a chain map h : F• ! F• inducing h on H0, in other words, such that 0 0 ~ the map from H0(F•) = A to H0(F•) = A induced by H is h. And (uniqueness) any two such chain maps are related by some chain homotopy. (In the lemma, all maps, chain maps, and chain homotopies are R-linear.) The proof is in Hatcher. A first consequence of the lemma is that the cohomology of Hom(F•;G) is independent, up to 0 isomorphism, of the chosen free resolution of A: If F• and F• are two free resolutions of A, apply 2 0 0 the lemma with A = A and h equal to the identity map to get a chain map F• ! F• inducing 0 the identity A ! A, then apply it again to get a map F• ! F• doing the same, then (applying the uniqueness part of the lemma twice) conclude that these are chain homotopy inverses. Now the functor HomR(−;G) applied to the two chain maps yields cochain maps in both directions ∗ 0∗ between F• and F• , and also applied to the chain homotopies it yields cochain homotopies to show that the cochain maps are homotopy inverses. This leads to a canonical isomorphism between ∗ 0∗ n the cohomology of F• and that of F• , making ExtR(A; G) well-defined up to isomorphism. Logically speaking, it is better to make it well-defined than just well-defined up to isomorphism, and practically speaking it is good to make it functorial. We can proceed as follows: A A To every module A, associate a particular free resolution F as follows. Let F0 be the free module A having the set A as basis and consider the obvious surjective module map : F0 ! A. Let A F1 be the free module having the set kernel() as basis and consider the obvious module map A A A @ : F1 ! F0 . Let F2 be the free module having the set kernel(@) as basis . ~ A B One sees easily that a module map h : A ! B yields a map h : F• ! F• of free resolutions, in such n A n a way that compositions and identities are preserved, so that A 7! H (Hom; F• ;G) = Ext (A; G) becomes a functor. Take this as the definition. For computing an example (or for other reasons) one may use a free resolution other than this canonical one, by the discussion above. By a similar discussion again relying the lemma, one can also figure out the map of Ext groups induced by a given map of modules, even if the Ext groups have been calculated using other free resolutions. Of course, the freedom to use other resolutions is also what tells us that Extn(A; G) is trivial for Z n > 1. The fact that the Z[T ]-module Z=p in the example above has no free resolution of length less than 2 1 follows from the fact that Ext (Z=p; Z=p) (which you can compute from the given resolution) is nontrivial. Here is another point of view: Consider the categories and functors fR − modulesg fresolutionsg ! fabgroupsg Here on the left the objects are R-modules and the maps are module homomorphisms, in the middle the objects are free resolutions (i.e. chain complexes F• of R-modules with Fn trivial for n < 0, Fn free for all n, and Hn(F•) trivial for all n 6= 0) and maps are chain homotopy classes of R-linear chain maps, and on the right the objects are abelian groups and the maps are homomorphisms. n The left functor is H0 and the right functor is H Hom(−;G). The lemma shows that the left arrow is an equivalence of categories, so that it has an inverse up n to natural isomorphism. ExtR can be defined as the right arrow composed with such an inverse. The construction A 7! F A is an explicit choice of right inverse (and inverse up to isomorphism). Here are some related ideas: In general an R-module P is called projective if HomR(P; −) preserves exactness, equivalently if HomR(P; −) takes surjections to surjections. Every free module is projective. Every projective 3 module is a direct summand of a free module. (Proof: Choose a surjection f : F ! P from some free module to P . Because P is projective, there is an element s 2 HomR(P; F ) that maps to 1 2 HomR(P; P ) when you compose with f. Therefore f ◦ s = 1 and f is a split surjection.) Ext groups can be computed using projective resolutions instead of free resolutions.
Recommended publications
  • A NOTE on COMPLETE RESOLUTIONS 1. Introduction Let
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 11, November 2010, Pages 3815–3820 S 0002-9939(2010)10422-7 Article electronically published on May 20, 2010 A NOTE ON COMPLETE RESOLUTIONS FOTINI DEMBEGIOTI AND OLYMPIA TALELLI (Communicated by Birge Huisgen-Zimmermann) Abstract. It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using com- plete resolutions. It is also shown that for an LHF-group G the kernels in a complete resolution of a ZG-module coincide with Benson’s class of cofibrant modules. 1. Introduction Let G be a group and ZG its integral group ring. A ZG-module M is said to admit a complete resolution (F, P,n) of coincidence index n if there is an acyclic complex F = {(Fi,ϑi)| i ∈ Z} of projective modules and a projective resolution P = {(Pi,di)| i ∈ Z,i≥ 0} of M such that F and P coincide in dimensions greater than n;thatis, ϑn F : ···→Fn+1 → Fn −→ Fn−1 → ··· →F0 → F−1 → F−2 →··· dn P : ···→Pn+1 → Pn −→ Pn−1 → ··· →P0 → M → 0 A ZG-module M is said to admit a complete resolution in the strong sense if there is a complete resolution (F, P,n)withHomZG(F,Q) acyclic for every ZG-projective module Q. It was shown by Cornick and Kropholler in [7] that if M admits a complete resolution (F, P,n) in the strong sense, then ∗ ∗ F ExtZG(M,B) H (HomZG( ,B)) ∗ ∗ where ExtZG(M, ) is the P-completion of ExtZG(M, ), defined by Mislin for any group G [13] as k k−r r ExtZG(M,B) = lim S ExtZG(M,B) r>k where S−mT is the m-th left satellite of a functor T .
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • How to Make Free Resolutions with Macaulay2
    How to make free resolutions with Macaulay2 Chris Peterson and Hirotachi Abo 1. What are syzygies? Let k be a field, let R = k[x0, . , xn] be the homogeneous coordinate ring of Pn and let X be a projective variety in Pn. Consider the ideal I(X) of X. Assume that {f0, . , ft} is a generating set of I(X) and that each polynomial fi has degree di. We can express this by saying that we have a surjective homogenous map of graded S-modules: t M R(−di) → I(X), i=0 where R(−di) is a graded R-module with grading shifted by −di, that is, R(−di)k = Rk−di . In other words, we have an exact sequence of graded R-modules: Lt F i=0 R(−di) / R / Γ(X) / 0, M |> MM || MMM || MMM || M& || I(X) 7 D ppp DD pp DD ppp DD ppp DD 0 pp " 0 where F = (f0, . , ft). Example 1. Let R = k[x0, x1, x2]. Consider the union P of three points [0 : 0 : 1], [1 : 0 : 0] and [0 : 1 : 0]. The corresponding ideals are (x0, x1), (x1, x2) and (x2, x0). The intersection of these ideals are (x1x2, x0x2, x0x1). Let I(P ) be the ideal of P . In Macaulay2, the generating set {x1x2, x0x2, x0x1} for I(P ) is described as a 1 × 3 matrix with gens: i1 : KK=QQ o1 = QQ o1 : Ring 1 -- the class of all rational numbers i2 : ringP2=KK[x_0,x_1,x_2] o2 = ringP2 o2 : PolynomialRing i3 : P1=ideal(x_0,x_1); P2=ideal(x_1,x_2); P3=ideal(x_2,x_0); o3 : Ideal of ringP2 o4 : Ideal of ringP2 o5 : Ideal of ringP2 i6 : P=intersect(P1,P2,P3) o6 = ideal (x x , x x , x x ) 1 2 0 2 0 1 o6 : Ideal of ringP2 i7 : gens P o7 = | x_1x_2 x_0x_2 x_0x_1 | 1 3 o7 : Matrix ringP2 <--- ringP2 Definition.
    [Show full text]
  • Depth, Dimension and Resolutions in Commutative Algebra
    Depth, Dimension and Resolutions in Commutative Algebra Claire Tête PhD student in Poitiers MAP, May 2014 Claire Tête Commutative Algebra This morning: the Koszul complex, regular sequence, depth Tomorrow: the Buchsbaum & Eisenbud criterion and the equality of Aulsander & Buchsbaum through examples. Wednesday: some elementary results about the homology of a bicomplex Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. We say that F· is a resolution of the A-module A/a Claire Tête Commutative Algebra I will begin with a little example.
    [Show full text]
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Arxiv:1710.09830V1 [Math.AC] 26 Oct 2017
    COMPUTATIONS OVER LOCAL RINGS IN MACAULAY2 MAHRUD SAYRAFI Thesis Advisor: David Eisenbud Abstract. Local rings are ubiquitous in algebraic geometry. Not only are they naturally meaningful in a geometric sense, but also they are extremely useful as many problems can be attacked by first reducing to the local case and taking advantage of their nice properties. Any localization of a ring R, for instance, is flat over R. Similarly, when studying finitely generated modules over local rings, projectivity, flatness, and freeness are all equivalent. We introduce the packages PruneComplex, Localization and LocalRings for Macaulay2. The first package consists of methods for pruning chain complexes over polynomial rings and their localization at prime ideals. The second package contains the implementation of such local rings. Lastly, the third package implements various computations for local rings, including syzygies, minimal free resolutions, length, minimal generators and presentation, and the Hilbert–Samuel function. The main tools and procedures in this paper involve homological methods. In particular, many results depend on computing the minimal free resolution of modules over local rings. Contents I. Introduction 2 I.1. Definitions 2 I.2. Preliminaries 4 I.3. Artinian Local Rings 6 II. Elementary Computations 7 II.1. Is the Smooth Rational Quartic a Cohen-Macaulay Curve? 12 III. Other Computations 13 III.1. Computing Syzygy Modules 13 arXiv:1710.09830v1 [math.AC] 26 Oct 2017 III.2. Computing Minimal Generators and Minimal Presentation 16 III.3. Computing Length and the Hilbert-Samuel Function 18 IV. Examples and Applications in Intersection Theory 20 V. Other Examples from Literature 22 VI.
    [Show full text]
  • On Sheaf Theory
    Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G).
    [Show full text]
  • Injectives and Ext This Note finishes up Wednesday’S Lecture, Together with the Notes Provided by Angus
    Injectives and Ext This note finishes up Wednesday's lecture, together with the notes provided by Angus. Suppose F is a left exact covariant functor from A-modules to B-modules. The right derived functors F nN of an A-module N are defined as follows: 1. Choose an injective resolution N−!I·. 2. Apply the functor F to I· (omit N) and take the cohomology of the resulting cochain complex: F nN := Hn(F (I·)). As before, this is independent of the choice of resolution, up to a canonical natural isomorphism, does indeed yield functors F n, there is a long exact sequence associated to a short exact sequence of A-modules, etc. One of the main examples is to take a fixed A- module M and F (N) = HomA(M; N). Here we can always take B = Z. If A is commutative we can take B = A, and more generally if A is a K-algebra for some commutative ring K, we take B = K. We then have the \balance for Ext" theorem: n Theorem 0.1 The derived functors F (N) of HomA(M; −) are naturally isomorphic to n ExtA(M; N). In other words, you can compute the Ext using either a projective resolution of M or an injective resolution of N. The proof is a straightforward variant of the proof of balance for T or; the latter will be given in the final lecture. Examples. 1. Using a projective resolution of =n, we showed that Exti ( =n; ) = =n Z Z Z Z Z for i = 1 and is zero otherwise.
    [Show full text]
  • Stacky Resolutions of Singular Schemes by Matthew Bryan Satriano Doctor of Philosophy in Mathematics University of California, Berkeley Professor Martin C
    Stacky Resolutions of Singular Schemes by Matthew Bryan Satriano A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Martin C. Olsson, Chair Professor Kenneth A. Ribet Professor Alistair Sinclair Spring 2010 Stacky Resolutions of Singular Schemes Copyright 2010 by Matthew Bryan Satriano 1 Abstract Stacky Resolutions of Singular Schemes by Matthew Bryan Satriano Doctor of Philosophy in Mathematics University of California, Berkeley Professor Martin C. Olsson, Chair Given a singular scheme X over a field k, we consider the problem of resolving the singularities of X by an algebraic stack. When X is a toroidal embedding or is ´etalelocally the quotient of a smooth scheme by a linearly reductive group scheme, we show that such “stacky resolutions” exist. Moroever, these resolutions are canonical and easily understandable in terms of the singularities of X. We give three applications of our stacky resolution theorems: various generalizations of the Chevalley- Shephard-Todd Theorem, a Hodge decomposition in characteristic p, and a theory of toric Artin stacks extending the work of Borisov-Chen-Smith. While these applications are seemingly different, they are all related by the common theme of using stacky resolutions to study singular schemes. i Contents 1 Introduction 1 1.1 Generalizations of the Chevalley-Shephard-Todd Theorem . 2 1.2 De Rham theory for schemes with lrs . 3 1.3 Toric Artin Stacks. 4 2 Stacky Resolutions of Schemes with lrs 5 2.1 Introduction . 5 2.2 Linear Actions on Polynomial Rings .
    [Show full text]
  • Derived Functors
    Derived Functors Alessio Cipriani October 25, 2017 Contents 1 Introduction 1 2 Injective Objects 2 3 Derived Functors and Their Properties 3 1 Introduction Let F : A!B be a functor between abelian categories. We have seen that it induces a functor between the homotopy categories. In particular under the hypothesis that F is exact we have a commutative diagram as follows K(A) K(B) QA QB (1) D(A) D(B) Hence, the functor F also descends at the level of derived categories. Remark 1.1. Indeed, if F is exact we have that i) F sends quasi-isomorphisms to quasi-isomorphisms: this follows from the fact that, if A• ! qis B• ! C• is a triangle in K(A) with A• −−! B•, then C• is acyclic, that is Hi(C•) = 0 8i. Then, if we apply F we get a triangle F (A•) ! F (B•) ! F (C•) where F (C•) is again qis acyclic (since F and Hi commute) and so F (A•) −−! F (B•). ii) F sends acyclic objects to acyclic objects: if A• ! B• ! C• is a triangle in K(A) with C• acyclic, then A• ! B• is a quasi-isomorphism so F (A•) ! F (B•) is also a quasi- isomorphism, hence F (C•) is acyclic. Remark 1.2. The above construction rely on the hypothesis that F is exact. If F is not exact, the situation described in (1) does not hold anymore. Indeed, let F be an additive left (or right) exact functor and consider an acyclic complex X•. Then we have that X• ! 0 is a quasi-isomorphism, hence when we apply F we have that F (0)=0 F (X•) 0 is not always a quasi-isomorphism because F (X•) might not be acyclic.
    [Show full text]
  • A CATEGORICAL INTRODUCTION to SHEAVES Contents 1
    A CATEGORICAL INTRODUCTION TO SHEAVES DAPING WENG Abstract. Sheaf is a very useful notion when defining and computing many different cohomology theories over topological spaces. There are several ways to build up sheaf theory with different axioms; however, some of the axioms are a little bit hard to remember. In this paper, we are going to present a \natural" approach from a categorical viewpoint, with some remarks of applications of sheaf theory at the end. Some familiarity with basic category notions is assumed for the readers. Contents 1. Motivation1 2. Definitions and Constructions2 2.1. Presheaf2 2.2. Sheaf 4 3. Sheafification5 3.1. Direct Limit and Stalks5 3.2. Sheafification in Action8 3.3. Sheafification as an Adjoint Functor 12 4. Exact Sequence 15 5. Induced Sheaf 18 5.1. Direct Image 18 5.2. Inverse Image 18 5.3. Adjunction 20 6. A Brief Introduction to Sheaf Cohomology 21 Conclusion and Acknowlegdment 23 References 23 1. Motivation In many occasions, we may be interested in algebraic structures defined over local neigh- borhoods. For example, a theory of cohomology of a topological space often concerns with sets of maps from a local neighborhood to some abelian groups, which possesses a natural Z-module struture. Another example is line bundles (either real or complex): since R or C are themselves rings, the set of sections over a local neighborhood forms an R or C-module. To analyze this local algebraic information, mathematians came up with the notion of sheaves, which accommodate local and global data in a natural way. However, there are many fashion of introducing sheaves; Tennison [2] and Bredon [1] have done it in two very different styles in their seperate books, though both of which bear the name \Sheaf Theory".
    [Show full text]
  • Sheaf Cohomology
    Sheaf Cohomology Gabriel Chˆenevert Payman Kassaei September 24, 2003 In this lecture, we define the cohomology groups of a topological space X with coefficients in a sheaf of abelian groups F on X in terms of the derived functors of the global section functor Γ(X; ¢ ). Then we introduce Cechˇ coho- mology with respect to an open covering of X, which permits to make explicit calculations, and discuss under which conditions it can be used to compute sheaf cohomology. 1 Derived functors We first need to review some homological algebra in order to be able to define sheaf cohomology using the derived functors of the global sections functor. Let A be an abelian category, that is, roughly, an additive category in which there exist well-behaved kernels and cokernels for each morphism, so that, for example, the notion of an exact sequence in A makes sense. If X is a fixed object in A and Ab denotes the category of abelian groups, then we have a contravariant functor Hom( ¢ ;X): A ¡! Ab: It is readily seen to be left exact, that is, for any short exact sequence f g 0 ¡! A ¡! B ¡! C ¡! 0 in A , the sequence g¤ f ¤ 0 ¡! Hom(C; X) ¡! Hom(B; X) ¡! Hom(A; X) is exact in Ab. Definition 1.1. An object I of A is said to be injective if the functor Hom( ¢ ;I) is exact. 1 Since Hom( ¢ ;I) is always left exact, we see that an object I of A is injective if and only if for each exact sequence 0 ! A ! B and morphism A ! I, there exists a morphism B ! I making the following diagram commute.
    [Show full text]