Lie Algebroid Cohomology As a Derived Functor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Homotopy Categories of Injective Modules of Derived Discrete Algebras
Dissertation zur Erlangung des Doktorgrades der Mathematik (Dr.Math.) der Universit¨atBielefeld The homotopy categories of injective modules of derived discrete algebras Zhe Han April 2013 ii Gedruckt auf alterungsbest¨andigemPapier nach DIN{ISO 9706 Abstract We study the homotopy category K(Inj A) of all injective A-modules Inj A and derived category D(Mod A) of the category Mod A of all A-modules, where A is finite dimensional algebra over an algebraically closed field. We are interested in the algebra with discrete derived category (derived discrete algebra. For a derived discrete algebra A, we get more concrete properties of K(Inj A) and D(Mod A). The main results we obtain are as following. Firstly, we consider the generic objects in compactly generated triangulated categories, specially in D(Mod A). We construct some generic objects in D(Mod A) for A derived discrete and not derived hereditary. Consequently, we give a characterization of algebras with generically trivial derived categories. Moreover, we establish some relations between the locally finite triangulated category of compact objects of D(Mod A), which is equivalent to the category Kb(proj A) of perfect complexes and the generically trivial derived category D(Mod A). Generic objects in K(Inj A) were also considered. Secondly, we study K(Inj A) for some derived discrete algebra A and give a classification of indecomposable objects in K(Inj A) for A radical square zero self- injective algebra. The classification is based on the fully faithful triangle functor from K(Inj A) to the stable module category Mod A^ of repetitive algebra A^ of A. -
Special Sheaves of Algebras
Special Sheaves of Algebras Daniel Murfet October 5, 2006 Contents 1 Introduction 1 2 Sheaves of Tensor Algebras 1 3 Sheaves of Symmetric Algebras 6 4 Sheaves of Exterior Algebras 9 5 Sheaves of Polynomial Algebras 17 6 Sheaves of Ideal Products 21 1 Introduction In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow noncommutative sheaves of rings, but if we say (X, OX ) is a ringed space then we mean OX is a sheaf of commutative rings. Throughout this note (X, OX ) is a ringed space. Associated to this ringed space are the following categories: Mod(X), GrMod(X), Alg(X), nAlg(X), GrAlg(X), GrnAlg(X) We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con- structions respectively. 2 Sheaves of Tensor Algebras Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX (U)-algebra given by the tensor algebra T (F (U)). That is, ⊗2 P (U) = OX (U) ⊕ F (U) ⊕ F (U) ⊕ · · · For an inclusion V ⊆ U let ρ : OX (U) −→ OX (V ) and η : F (U) −→ F (V ) be the morphisms of abelian groups given by restriction. For n ≥ 2 we define a multilinear map F (U) × · · · × F (U) −→ F (V ) ⊗ · · · ⊗ F (V ) (m1, . -
INJECTIVE OBJECTS in ABELIAN CATEGORIES It Is Known That The
INJECTIVE OBJECTS IN ABELIAN CATEGORIES AKHIL MATHEW It is known that the category of modules over a ring has enough injectives, i.e. any object can be imbedded as a subobject of an injective object. This is one of the first things one learns about injective modules, though it is a nontrivial fact and requires some work. Similarly, when introducing sheaf cohomology, one has to show that the category of sheaves on a given topological space has enough injectives, which is a not-too-difficult corollary of the first fact. I recently learned, however, of a much more general result that guarantees that an abelian category has enough injectives (which I plan to put to use soon with some more abstract nonsense posts). I learned this from Grothendieck's Tohoku paper, but he says that it was well-known. We will assume familiarity with basic diagram-chasing in abelian categories (e.g. the notion of the inverse image of a subobject). 1. Preliminaries Let C be an abelian category. An object I 2 C is called injective if the functor A ! HomC(A; I) is exact; it is always left-exact. This is the same as saying that if A is a subobject of B, then any A ! I can be extended to a morphism B ! I. Let us consider the following conditions on an abelian category C. First, assume C admits all filtered colimits. So, for instance, arbitrary direct sums exist. P Moreover, if the Ai; i 2 I are subobjects of A, then the sum Ai makes sense; L it is the image of i Ai ! A, and is a sub-object of A. -
SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter. -
Injective Objects in Triangulated Categories
Injective objects in triangulated categories Garkusha, Grigory and Prest, Mike 2004 MIMS EPrint: 2006.109 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 INJECTIVE OBJECTS IN TRIANGULATED CATEGORIES GRIGORY GARKUSHA AND MIKE PREST 1. Introduction We extend ideas and results of Benson and Krause on pure-injectives in triangulated categories. Given a generating set of compact objects in a compactly generated triangulated category T we define notions of monomorphism, exactness and injectivity relative to this set. We show that the injectives correspond to injective objects in a localisation of the functor category Mod Tc where Tc denotes the subcategory of compact objects of T. The paper begins by setting up the required localisation theory. Benson and Krause [BK] showed that injective modules over the Tate cohomology ring of a finite group algebra kG, where k is a field of characteristic p and G is a p-group, correspond to certain pure-injective objects in the (compactly generated, triangulated) stable module category of kG. We generalise this to arbitrary compactly generated triangulated categories, replacing the trivial module k by any compact object and the Tate cohomology ring by the graded endomorphism ring of that object. We obtain the strongest results in the case that this graded endomorphism ring is coherent. Notation. If no confusion concerning the ring R or the category C is possible, we usually abbreviate HomR(X, Y ) or HomC(X, Y ) to (X, Y ) or C(X, Y ). -
Differentials
Section 2.8 - Differentials Daniel Murfet October 5, 2006 In this section we will define the sheaf of relative differential forms of one scheme over another. In the case of a nonsingular variety over C, which is like a complex manifold, the sheaf of differential forms is essentially the same as the dual of the tangent bundle in differential geometry. However, in abstract algebraic geometry, we will define the sheaf of differentials first, by a purely algebraic method, and then define the tangent bundle as its dual. Hence we will begin this section with a review of the module of differentials of one ring over another. As applications of the sheaf of differentials, we will give a characterisation of nonsingular varieties among schemes of finite type over a field. We will also use the sheaf of differentials on a nonsingular variety to define its tangent sheaf, its canonical sheaf, and its geometric genus. This latter is an important numerical invariant of a variety. Contents 1 K¨ahler Differentials 1 2 Sheaves of Differentials 2 3 Nonsingular Varieties 13 4 Rational Maps 16 5 Applications 19 6 Some Local Algebra 22 1 K¨ahlerDifferentials See (MAT2,Section 2) for the definition and basic properties of K¨ahler differentials. Definition 1. Let B be a local ring with maximal ideal m.A field of representatives for B is a subfield L of A which is mapped onto A/m by the canonical mapping A −→ A/m. Since L is a field, the restriction gives an isomorphism of fields L =∼ A/m. Proposition 1. -
Sheafification and Existence of Injectives
Sheacation and existence of injectives Marius Stekelenburg March 8, 2016 1 Sheacation In this section, we will discuss how a sheacation works on ANY small site. The presheaves we will discuss are presheaves of sets. But once this construc- tion is done, one can immediately guess how this would work on presheaves of (abelian) groups and of (commutative) rings. The sheacation will be done in two steps: rst we will turn presheaves into separated presheaves, and then we will turn separated presheaves into (actual) sheaves. 1.1 Separated sheaves Denition 1.1. Let C be a site. A presheaf on F on C is called separated if for any object U 2 C, and any covering (Ui)i, the restriction map F(U) ! Q is injective. i F(Ui) Denition 1.2. Let F be a presheaf on C. The separated presheaf associ- ated to F is a separated presheaf F s, equipped with a morphism F!F s satisfying the following universal property: for each morphism F!G with G being separated, there exists a unique F s !G such that the following triangle commutes: F F s G Theorem 1.3. The separated presheaf associated to F exists, and is given by F s(U) = F(U)= ∼, with s; t 2 F(U) being equivalent if there exists a covering such that for each . (Ui)i sjUi = tjUi i Proof. See Exercise 3:1. 1 1.2 Sheacation of separated sheaves From now on, we will assume C to be a small site. Denition 1.4. Let F be a presheaf on C. -
4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves
4 Sheaves of modules, vector bundles, and (quasi-)coherent sheaves “If you believe a ring can be understood geometrically as functions its spec- trum, then modules help you by providing more functions with which to measure and characterize its spectrum.” – Andrew Critch, from MathOver- flow.net So far we discussed general properties of sheaves, in particular, of rings. Similar as in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our understanding of a given ringed space (or a scheme), and to provide further techniques to play with functions, or function-like objects. There are particularly important notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules (respectively, finitely generated modules) over a given ring. They also generalize the notion of vector bundles. Definition 38. Let (X, ) be a ringed space. A sheaf of -modules, or simply an OX OX -module, is a sheaf on X such that OX F (i) the group (U) is an (U)-module for each open set U X; F OX ✓ (ii) the restriction map (U) (V ) is compatible with the module structure via the F !F ring homomorphism (U) (V ). OX !OX A morphism of -modules is a morphism of sheaves such that the map (U) F!G OX F ! (U) is an (U)-module homomorphism for every open U X. G OX ✓ Example 39. Let (X, ) be a ringed space, , be -modules, and let ' : OX F G OX F!G be a morphism. Then ker ', im ', coker ' are again -modules. If is an - OX F 0 ✓F OX submodule, then the quotient sheaf / is an -module. -
On Sheaf Theory
Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G). -
The Algebraic Theory of D-Modules
THE ALGEBRAIC THEORY OF D-MODULES DMITRY GOUREVITCH Abstract. These are draft notes of the course I gave in fall semester 2015 at the Weizmann Institute of Science, under the guidance of Joseph Bernstein. Notes by Alexander Shamov. Typos are probable, mistakes possible, comments welcome. Contents 1. D-modules on affine spaces 1 1.1. Dimension 2 1.2. Proof of Bernstein’s inequality 4 2. Holonomic modules, and an application. 5 2.1. Another proof of Bernstein inequality 5 3. Associated varieties and singular support 7 3.1. Digression on several definitions of dimension of algebraic varieties 8 3.2. The geometric filtration 9 3.3. Involutivity of the associated variety 9 3.4. Irreducible non-holonomic Dn-modules 10 4. Operations on D-modules 10 5. Homological properties 13 6. D-modules on smooth affine varieties 18 7. D-modules on general separated smooth varieties 20 8. Kashiwara’s lemma and its corollaries 21 8.1. Corollaries 22 9. D-modules on the projective space 24 9.1. Twisted differential operators on the projective space 25 10. The Bernstein-Kashiwara theorem on distributional solutions of holonomic modules 26 10.1. Proof of Theorem 10.6 29 11. Derived categories 30 References 34 1. D-modules on affine spaces Notation 1.1. Dn := hx1, . , xn, ∂1, . , ∂ni is the algebra of polynomial differential operators. Definition 1.2. Let M be a finitely generated Dn-module. Then a solution of M is a ∞ n −∞ n homomorphism from M to some Dn-module of functions (say, C (R ) or C (R )). -
D-Modules and Representation Theory
D-Modules and Representation Theory Part III Essay Topic 96 D-MODULES AND REPRESENTATION THEORY Contents 1. Introduction 1 1.1. Motivation 1 1.2. Organization and references 2 1.3. Conventions and notation 3 1.4. Acknowledgments 3 2. D-modules on smooth algebraic varieties 3 2.1. Definition and examples 3 2.2. Left and right D-modules 6 2.3. Pullback and pushforward of D-modules 8 2.4. The singular support 14 2.5. Holonomic D-modules and duality 17 2.6. D-modules on P1 21 3. The geometric setting 23 3.1. Preliminaries on semisimple algebraic groups 24 3.2. Flag and Schubert varieties 24 3.3. Equivariant vector bundles on the flag variety 24 3.4. Preliminaries on Lie algebras 26 3.5. Lie algebra actions on G-equivariant sheaves 26 3.6. Chevalley and Harish-Chandra isomorphisms 27 4. Beilinson-Bernstein localization 30 4.1. Twisted differential operators 30 4.2. Lie algebroids and enveloping algebras on the flag variety 31 4.3. A family of twisted differential operators 32 4.4. The localization functor and the localization theorem 33 λ 4.5. The map U(g) ! Γ(X; DX ) 35 4.6. The geometry of the nilpotent cone and Kostant's Theorem 36 4.7. The global sections functor on the flag variety 41 References 44 1. Introduction 1.1. Motivation. Let X be a smooth algebraic variety over a field of characteristic 0. This essay will be primarily concerned with D-modules, or modules over a sheaf D of differential operators defined on X. -
The Relative Proj Construction
The Relative Proj Construction Daniel Murfet October 5, 2006 Earlier we defined the Proj of a graded ring. In these notes we introduce a relative version of this construction, which is the Proj of a sheaf of graded algebras S over a scheme X. This construction is useful in particular because it allows us to construct the projective space bundle associated to a locally free sheaf E , and it allows us to give a definition of blowing up with respect to an arbitrary sheaf of ideals. Contents 1 Relative Proj 1 2 The Sheaf Associated to a Graded Module 5 2.1 Quasi-Structures ..................................... 14 3 The Graded Module Associated to a Sheaf 15 3.1 Ring Structure ...................................... 21 4 Functorial Properties 21 5 Ideal Sheaves and Closed Subchemes 25 6 The Duple Embedding 27 7 Twisting With Invertible Sheaves 31 8 Projective Space Bundles 36 1 Relative Proj See our Sheaves of Algebras notes (SOA) for the definition of sheaves of algebras, sheaves of graded algebras and their basic properties. In particular note that a sheaf of algebras (resp. graded algebras) is not necessarily commutative. Although in SOA we deal with noncommutative algebras over a ring, here “A-algebra” will refer to a commutative algebra over a commutative ring A. Example 1. Let X be a scheme and F a sheaf of modules on X. In our Special Sheaves of Algebras (SSA) notes we defined the following structures: • The relative tensor algebra T(F ), which is a sheaf of graded OX -algebras with the property 0 that T (F ) = OX .