4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves

Total Page:16

File Type:pdf, Size:1020Kb

4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves 4 Sheaves of modules, vector bundles, and (quasi-)coherent sheaves “If you believe a ring can be understood geometrically as functions its spec- trum, then modules help you by providing more functions with which to measure and characterize its spectrum.” – Andrew Critch, from MathOver- flow.net So far we discussed general properties of sheaves, in particular, of rings. Similar as in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our understanding of a given ringed space (or a scheme), and to provide further techniques to play with functions, or function-like objects. There are particularly important notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules (respectively, finitely generated modules) over a given ring. They also generalize the notion of vector bundles. Definition 38. Let (X, ) be a ringed space. A sheaf of -modules, or simply an OX OX -module, is a sheaf on X such that OX F (i) the group (U) is an (U)-module for each open set U X; F OX ✓ (ii) the restriction map (U) (V ) is compatible with the module structure via the F !F ring homomorphism (U) (V ). OX !OX A morphism of -modules is a morphism of sheaves such that the map (U) F!G OX F ! (U) is an (U)-module homomorphism for every open U X. G OX ✓ Example 39. Let (X, ) be a ringed space, , be -modules, and let ' : OX F G OX F!G be a morphism. Then ker ', im ', coker ' are again -modules. If is an - OX F 0 ✓F OX submodule, then the quotient sheaf / is an -module. Any direct sum, direct F F 0 OX product, direct limit, or inverse limit of -modules is an -module. OX OX Definition 40. Let , be two -modules. We denote the group of morphisms from F G OX to by Hom ( , ) (or HomX ( , ) or Hom( , ) if there is no confusing). F G OX F G F G F G If U X is an open subset, then is an -module. The presheaf ✓ F|U OX |U U Hom ( U , U ) 7! OX |U F| G| is indeed a sheaf, and we will call it the sheaf Hom. We denote it by om ( , ). H OX F G The sheaf associated to the presheaf U (U) (U) (U) is called the tensor product 7! F ⌦OX G . If there is no confusing, we write simply . F⌦OX G F⌦G Definition 41. An -module is free if it is isomorphic to a direct sum of copies OX F of .Itislocally free if X can be covered by open subsets U for which is a free OX F|U -module. In the case, the rank of is the number of free copies of the structure OX |U F sheaf needed. Note that the rank of a locally free sheaf is the same everywhere when X is connected. A locally free sheaf of rank 1 is called an invertible sheaf. A sheaf of ideals on X is a sheaf of modules I which is a subsheaf of , that is, I (U) OX is an ideal in (U) for each open set U X. OX ✓ 17 Topic 1 : Sheaf Example 42. Let A be a ring, and I A be an ideal. By the definition, the set V (I) ⇢ ✓ X =SpecA is a closed subset. We identify V (I) as an affine scheme Y =SpecA/I,so that we have a short exact sequence of sheaves of -modules OX 0 I 0 ! !OX !OY ! which is the natural analogue of 0 I A A/I 0. ! ! f ! ! Indeed, if there is a closed subscheme Y , X, then the map X f Y induces a ! O ! ⇤O surjection on its global sections A B. In other words, B A/I for some ideal I in A. ! ' It is straightforward that the quotient A A/I is compatible with every localization, ! hence, we may cover Y by D(f ) Y where D(f ) is a collection of distinguished open i \ { i } subsets of X =SpecA. In particular, Y has to coincide with the affine scheme Spec A/I. The ideal sheaf I is defined from local data on distinguished open sets. Namely, if U = D(s)wheres A, then we assign I (U):=I A . 2 s ✓ s Definition 43. Let f :(X, ) (Y, ) be a morphism of ringed spaces, let be OX ! OY F an X -module, and let be an Y -module. O G O # Note that the direct image f is an f X -module. Together with the morphism f : ⇤F ⇤O Y f X of sheaves of rings on Y , we have a natural Y -module structure on f . O ! ⇤O O ⇤F We call it the direct image of , or the pushforward of by f. F F Also note that the inverse image sheaf f 1 is an f 1 -module. Thanks to the adjoint − G − OY property of f 1, there is a unique morphism f 1 which corresponds f # : − − OY !OX Y f X . To provide an X -module structure, we take the tensor product O ! ⇤O O 1 f ⇤ := f − f 1 X G G⌦ − OY O and call it the inverse image of , or the pullback of by f. G G Remark 44. f and f ⇤ are adjoint functors between the category of X -modules and ⇤ O the category of -modules. OY If we restrict our focus to the case of schemes, we already have enough general notions and give the definition of quasi-coherent and coherent sheaves on schemes. For instance, on an affine scheme Spec A, a quasi-coherent (resp., coherent) sheaf is completely determined by an A-module (resp., a finitely generated A-module) M. If there is an A-module M, then it is compatible with every localization of A. In particular, for each s A,the 2 localized module Ms is an As-module and the module structure is compatible with the localization. This enables us to build a sheaf of -module. However, before we OSpec A proceed forward, let us recall the notion of vector bundles and see why it is natural to consider quasi-coherent and coherent sheaves instead of vector bundles. Let X be a real topological manifold. A vector bundle of rank r on X is defined as a E map ⇡ : X such that for every x X, there is an open neighborhood U of x and E! 2 r 1 a homeomorphism (also called a local trivialization) φU : U R ⇡− (U) satisfying r ⇥ ! 1 r (⇡ φU )(x, v)=x for any x U and v R . In particular, the fiber ⇡− (x) R has ◦ 2 2 ' the structure of a vector space. A rank 1 vector bundle is called a line bundle. 18 When we have two trivializations over U1 and U2, we have an isomorphism on the 1 r r intersection φ− φ :(U U ) (U U ) which sends (x, v)to(x, T (x)v) U2 U1 1 2 R 1 2 R 12 ◦ \ ⇥ ! \ ⇥ r for some GL(r)-valued function T12 : U1 U2 GL(r) = Aut(R ). When U3 is another \ ! open subset of X with a local trivialization of , then they satisfy the cocycle condition E T23 U1 U2 U3 T12 U1 U2 U3 = T13 U1 U2 U3 . | \ \ ◦ | \ \ | \ \ In fact, an open cover U of X with local trivializations φ for each i and transition { i} Ui functions Tij recover the vector bundle ⇡ : X by “gluing together” the various r { } E! Ui R along Ui Uj using Tij. (Compare with the gluing property of sheaves.) ⇥ \ Now we associate a sheaf to a vector bundle ⇡ : X, called the sheaf of sections. Note E! that a section of a vector bundle on an open subset U X is a function s : U E ✓ !E such that ⇡ s = id . Hence, if we take as the sheaf of continuous functions on X ◦ U OX and regard (X, ) as a ringed space, then the sheaf OX F U (U):= s : U sections of ⇡ over U 7! F { !E | } has an -module structure. In particular, when ⇡ admits a local trivialization over OX U, the sections over U naturally identify with the r-tuples of functions U R, and we r ! conclude that ⊕ . In other words, a vector bundle of rank r gives a locally F|U 'OX |U free sheaf of rank r on X. Let us write down a little more detail inside the above construction. Let U X be an ⇢ open set, and let Ui is an open covering of U by open subsets Ui equipped with trivi- { } 1 alizations. Let s : U be a section over U. The restriction s Ui : Ui ⇡− (Ui) onto !E r | ! each subset Ui induces a vector-valued function s ~ i : Ui R , via the local trivialization 1 1 r ! φ− : ⇡− (Ui) U R together with the second projection. Then we have Tijs ~ i = s ~ j: Ui ! ⇥ chase the following diagram 1 s U U φU− | i\ j 1 i r pr2 r Ui Uj / ⇡− (Ui Uj) / (Ui Uj) R / R \ \ \ ⇥ idU U Tij Tij i\ j ⇥ φ 1 s U U U− ✏ | i\ j 1 j r pr2 ✏ r Ui Uj / ⇡− (Ui Uj) / (Ui Uj) R / R \ \ \ ⇥ where the composition of the horizontal maps in the top row describes s ~ i, and the one for the bottom row describes s ~ . Hence, the locally free sheaf of sections of ⇡ : X j F E! provides the same transition functions T GL(r, (U U )), and of course, they ij 2 O i \ j satisfy the cocycle condition.
Recommended publications
  • EXERCISES 1 Exercise 1.1. Let X = (|X|,O X) Be a Scheme and I Is A
    EXERCISES 1 Exercise 1.1. Let X = (|X|, OX ) be a scheme and I is a quasi-coherent OX -module. Show that the ringed space X[I] := (|X|, OX [I]) is also a scheme. Exercise 1.2. Let C be a category and h : C → Func(C◦, Set) the Yoneda embedding. Show ∼ that for any arrows X → Y and Z → Y in C, there is a natural isomorphism hX×Z Y → hX ×hY hZ . Exercise 1.3. Let A → R be a ring homomorphism. Verify that under the identification 2 of DerA(R, ΩR/A) with the sections of the diagonal map R ⊗A R/J → R given in lecture, 1 the universal derivation d : R → ΩR/A corresponds to the section given by sending x ∈ R to 1 ⊗ x. Exercise 1.4. Let AffZ be the category of affine schemes. The Yoneda functor h gives rise to a related functor hAff : Sch → Func(Aff◦ , Set) Z Z which only considers the functor of points for affine schemes. Is this functor still fully faithful? Cultural note: since Aff◦ is equivalent to the category of rings ( -algebras!), we can also Z Z view h as defining a (covariant) functor on the category of rings. When X is an affine scheme Aff of the form Z[{xi}]/({fj}], the value of hX on A is just the set of solutions of the fj with coordinates in A. Exercise 1.5. Let R be a ring and H : ModR → Set a functor which commutes with finite products. Verify the claim in lecture that H(I) has an R-module structure.
    [Show full text]
  • The Jouanolou-Thomason Homotopy Lemma
    The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • ALGEBRAIC GEOMETRY (PART III) EXAMPLE SHEET 3 (1) Let X Be a Scheme and Z a Closed Subset of X. Show That There Is a Closed Imme
    ALGEBRAIC GEOMETRY (PART III) EXAMPLE SHEET 3 CAUCHER BIRKAR (1) Let X be a scheme and Z a closed subset of X. Show that there is a closed immersion f : Y ! X which is a homeomorphism of Y onto Z. (2) Show that a scheme X is affine iff there are b1; : : : ; bn 2 OX (X) such that each D(bi) is affine and the ideal generated by all the bi is OX (X) (see [Hartshorne, II, exercise 2.17]). (3) Let X be a topological space and let OX to be the constant sheaf associated to Z. Show that (X; OX ) is a ringed space and that every sheaf on X is in a natural way an OX -module. (4) Let (X; OX ) be a ringed space. Show that the kernel and image of a morphism of OX -modules are also OX -modules. Show that the direct sum, direct product, direct limit and inverse limit of OX -modules are OX -modules. If F and G are O H F G O L X -modules, show that omOX ( ; ) is also an X -module. Finally, if is a O F F O subsheaf of an X -module , show that the quotient sheaf L is also an X - module. O F O O F ' (5) Let (X; X ) be a ringed space and an X -module. Prove that HomOX ( X ; ) F(X). (6) Let f :(X; OX ) ! (Y; OY ) be a morphism of ringed spaces. Show that for any O F O G ∗G F ' G F X -module and Y -module we have HomOX (f ; ) HomOY ( ; f∗ ).
    [Show full text]
  • Special Sheaves of Algebras
    Special Sheaves of Algebras Daniel Murfet October 5, 2006 Contents 1 Introduction 1 2 Sheaves of Tensor Algebras 1 3 Sheaves of Symmetric Algebras 6 4 Sheaves of Exterior Algebras 9 5 Sheaves of Polynomial Algebras 17 6 Sheaves of Ideal Products 21 1 Introduction In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow noncommutative sheaves of rings, but if we say (X, OX ) is a ringed space then we mean OX is a sheaf of commutative rings. Throughout this note (X, OX ) is a ringed space. Associated to this ringed space are the following categories: Mod(X), GrMod(X), Alg(X), nAlg(X), GrAlg(X), GrnAlg(X) We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con- structions respectively. 2 Sheaves of Tensor Algebras Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX (U)-algebra given by the tensor algebra T (F (U)). That is, ⊗2 P (U) = OX (U) ⊕ F (U) ⊕ F (U) ⊕ · · · For an inclusion V ⊆ U let ρ : OX (U) −→ OX (V ) and η : F (U) −→ F (V ) be the morphisms of abelian groups given by restriction. For n ≥ 2 we define a multilinear map F (U) × · · · × F (U) −→ F (V ) ⊗ · · · ⊗ F (V ) (m1, .
    [Show full text]
  • Recent Developments in Representation Theory
    RECENT DEVELOPMENTS IN REPRESENTATION THEORY Wilfried 5chmid* Department of Mathematics Harvard University Cambridge, MA 02138 For the purposes of this lecture, "representation theory" means representation theory of Lie groups, and more specifically, of semisimple Lie groups. I am interpreting my assignment to give a survey rather loosely: while I shall touch upon various major advances in the subject, I am concentrating on a single development. Both order and emphasis of my presentation are motivated by expository considerations, and do not reflect my view of the relative importance of various topics. Initially G shall denote a locally compact topological group which is unimodular -- i.e., left and right Haar measure coincide -- and H C G a closed unimodular subgroup. The quotient space G/H then carries a G- invariant measure, so G acts unitarily on the Hilbert space L2(G/H). In essence, the fundamental problem of harmonic analysis is to decompose L2(G/H) into a direct "sum" of irreducibles. The quotation marks allude to the fact that the decomposition typically involves the continuous ana- logue of a sum, namely a direct integral, as happens already for non- compact Abelian groups. If G is of type I -- loosely speaking, if the unitary representations of G behave reasonably -- the abstract Plan- cherel theorem [12] asserts the existence of such a decomposition. This existence theorem raises as many questions as it answers: to make the decomposition useful, one wants to know it explicitly and, most impor- tantly, one wants to understand the structure of the irreducible sum- mands. In principle, any irreducible unitary representation of G can occur as a constituent of L2(G/H), for some H C G.
    [Show full text]
  • NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
    NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • Differentials
    Section 2.8 - Differentials Daniel Murfet October 5, 2006 In this section we will define the sheaf of relative differential forms of one scheme over another. In the case of a nonsingular variety over C, which is like a complex manifold, the sheaf of differential forms is essentially the same as the dual of the tangent bundle in differential geometry. However, in abstract algebraic geometry, we will define the sheaf of differentials first, by a purely algebraic method, and then define the tangent bundle as its dual. Hence we will begin this section with a review of the module of differentials of one ring over another. As applications of the sheaf of differentials, we will give a characterisation of nonsingular varieties among schemes of finite type over a field. We will also use the sheaf of differentials on a nonsingular variety to define its tangent sheaf, its canonical sheaf, and its geometric genus. This latter is an important numerical invariant of a variety. Contents 1 K¨ahler Differentials 1 2 Sheaves of Differentials 2 3 Nonsingular Varieties 13 4 Rational Maps 16 5 Applications 19 6 Some Local Algebra 22 1 K¨ahlerDifferentials See (MAT2,Section 2) for the definition and basic properties of K¨ahler differentials. Definition 1. Let B be a local ring with maximal ideal m.A field of representatives for B is a subfield L of A which is mapped onto A/m by the canonical mapping A −→ A/m. Since L is a field, the restriction gives an isomorphism of fields L =∼ A/m. Proposition 1.
    [Show full text]