Etale Cohomology of Curves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Leray-Serre Spectral Sequence
THE LERAY-SERRE SPECTRAL SEQUENCE REUBEN STERN Abstract. Spectral sequences are a powerful bookkeeping tool, used to handle large amounts of information. As such, they have become nearly ubiquitous in algebraic topology and algebraic geometry. In this paper, we take a few results on faith (i.e., without proof, pointing to books in which proof may be found) in order to streamline and simplify the exposition. From the exact couple formulation of spectral sequences, we ∗ n introduce a special case of the Leray-Serre spectral sequence and use it to compute H (CP ; Z). Contents 1. Spectral Sequences 1 2. Fibrations and the Leray-Serre Spectral Sequence 4 3. The Gysin Sequence and the Cohomology Ring H∗(CPn; R) 6 References 8 1. Spectral Sequences The modus operandi of algebraic topology is that \algebra is easy; topology is hard." By associating to n a space X an algebraic invariant (the (co)homology groups Hn(X) or H (X), and the homotopy groups πn(X)), with which it is more straightforward to prove theorems and explore structure. For certain com- putations, often involving (co)homology, it is perhaps difficult to determine an invariant directly; one may side-step this computation by approximating it to increasing degrees of accuracy. This approximation is bundled into an object (or a series of objects) known as a spectral sequence. Although spectral sequences often appear formidable to the uninitiated, they provide an invaluable tool to the working topologist, and show their faces throughout algebraic geometry and beyond. ∗;∗ ∗;∗ Loosely speaking, a spectral sequence fEr ; drg is a collection of bigraded modules or vector spaces Er , equipped with a differential map dr (i.e., dr ◦ dr = 0), such that ∗;∗ ∗;∗ Er+1 = H(Er ; dr): That is, a bigraded module in the sequence comes from the previous one by taking homology. -
Homological Algebra
Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of -
Some Extremely Brief Notes on the Leray Spectral Sequence Greg Friedman
Some extremely brief notes on the Leray spectral sequence Greg Friedman Intro. As a motivating example, consider the long exact homology sequence. We know that if we have a short exact sequence of chain complexes 0 ! C∗ ! D∗ ! E∗ ! 0; then this gives rise to a long exact sequence of homology groups @∗ ! Hi(C∗) ! Hi(D∗) ! Hi(E∗) ! Hi−1(C∗) ! : While we may learn the proof of this, including the definition of the boundary map @∗ in beginning algebraic topology and while this may be useful to know from time to time, we are often happy just to know that there is an exact homology sequence. Also, in many cases the long exact sequence might not be very useful because the interactions from one group to the next might be fairly complicated. However, in especially nice circumstances, we will have reason to know that certain homology groups vanish, or we might be able to compute some of the maps here or there, and then we can derive some consequences. For example, if ∼ we have reason to know that H∗(D∗) = 0, then we learn that H∗(E∗) = H∗−1(C∗). Similarly, to preserve sanity, it is usually worth treating spectral sequences as \black boxes" without looking much under the hood. While the exact details do sometimes come in handy to specialists, spectral sequences can be remarkably useful even without knowing much about how they work. What spectral sequences look like. In long exact sequence above, we have homology groups Hi(C∗) (of course there are other ways to get exact sequences). -
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017)
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017) Richard Hughes May 12, 2017 1 Preliminaries on derived functors. 1.1 A computational definition of right derived functors. We begin by recalling that a functor between abelian categories F : A!B is called left exact if it takes short exact sequences (SES) in A 0 ! A ! B ! C ! 0 to exact sequences 0 ! FA ! FB ! FC in B. If in fact F takes SES in A to SES in B, we say that F is exact. Question. Can we measure the \failure of exactness" of a left exact functor? The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which we will define below, are in a precise sense the unique extension of F to an exact functor. Recall that an object I 2 A is called injective if the functor op HomA(−;I): A ! Ab is exact. An injective resolution of A 2 A is a quasi-isomorphism in Ch(A) A ! I• = (I0 ! I1 ! I2 !··· ) where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every A 2 A embeds into some injective object, we say that A has enough injectives { in this situation it is a theorem that every object admits an injective resolution. So, for A 2 A choose an injective resolution A ! I• and define the pth right derived functor of F applied to A by RpF (A) := Hp(F (I•)): Remark • You might worry about whether or not this depends upon our choice of injective resolution for A { it does not, up to canonical isomorphism. -
HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition. -
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
The Calabi Complex and Killing Sheaf Cohomology
The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality................... -
Lecture 15. De Rham Cohomology
Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. -
On the Cohomology of the Finite Special Linear Groups, I
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 54, 216-238 (1978) On the Cohomology of the Finite Special Linear Groups, I GREGORY W. BELL* Fort Lewis College, Durango, Colorado 81301 Communicated by Graham Higman Received April 1, 1977 Let K be a finite field. We are interested in determining the cohomology groups of degree 0, 1, and 2 of various KSL,+,(K) modules. Our work is directed to the goal of determining the second degree cohomology of S&+,(K) acting on the exterior powers of its standard I + l-dimensional module. However, our solution of this problem will involve the study of many cohomology groups of degree 0 and 1 as well. These groups are of independent interest and they are useful in many other cohomological calculations involving SL,+#) and other Chevalley groups [ 11. Various aspects of this problem or similar problems have been considered by many authors, including [l, 5, 7-12, 14-19, 211. There have been many techni- ques used in studing this problem. Some are ad hoc and rely upon particular information concerning the groups in question. Others are more general, but still place restrictions, such as restrictions on the characteristic of the field, the order of the field, or the order of the Galois group of the field. Our approach is general and shows how all of these problems may be considered in a unified. way. In fact, the same method may be applied quite generally to other Chevalley groups acting on certain of their modules [l]. -
Arxiv:Math/0305187V1 [Math.AT] 13 May 2003 Oehn Aiir Ieapiigo Iglrchmlg G Th Subtleties Cohomology Are Singular There of Time
MULTIPLICATIVE STRUCTURES ON HOMOTOPY SPECTRAL SEQUENCES II DANIEL DUGGER Contents 1. Introduction 1 2. Sign conventions in singular cohomology 1 3. Spectral sequences for filtered spaces 3 4. The Postnikov/Whitehead spectral sequence 8 5. Bockstein spectral sequences 13 6. Thehomotopy-fixed-pointspectralsequence 15 7. Spectralsequencesfromopencoverings 16 References 19 1. Introduction This short paper is a companion to [D1]. Here the main results of that paper are used to establish multiplicative structures on a few standard spectral sequences. The applications consist of (a) applying [D1, Theorem 6.1] to obtain a pairing of spectral sequences, and (b) identifying the pairing on the E1- or E2-term with something familiar, like a pairing of singular cohomology groups. Most of the arguments are straightforward, but there are subtleties that appear from time to time. Originally the aim was just to record a careful treatment of pairings on Post- nikov/Whitehead towers, but in the end other examples have been included because it made sense to do so. These examples are just the ones that I personally have needed to use at some point over the years, and so of course it is a very limited selection. arXiv:math/0305187v1 [math.AT] 13 May 2003 In this paper all the notation and conventions of [D1] remain in force. In particu- lar, the reader is referred to [D1, Appendix C] for our standing assumptions about the category of spaces and spectra, and for basic results about signs for bound- ary maps. The symbol ∧ denotes the derived functor of ∧, and W⊥ denotes an ‘augmented tower’ as in [D1, Section 6]. -
Sheaf Theory
Sheaf Theory Anne Vaugon December 20, 2013 The goals of this talk are • to define a generalization denoted by RΓ(F) of de Rham cohomology; • to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived functor). 1 Presheaves and sheaves 1.1 Definitions and examples Let X be a topological space. Definition 1.1. A presheaf of k-modules F on X is defined by the following data: • a k-module F(U) for each open set U of X; • a map rUV : F(U) → F(V ) for each pair V ⊂ U of open subsets such that – rWV ◦ rVU = rWU for all open subsets W ⊂ V ⊂ U; – rUU = Id for all open subsets U. Therefore, a presheaf is a functor from the opposite category of open sets to the category of k-modules. If F is a presheaf, F(U) is called the set of sections of U and rVU the restriction from U to V . Definition 1.2. A presheaf F is a sheaf if • for any family (Ui)i∈I of open subsets of X • for any family of elements si ∈ F(Ui) such that rUi∩Uj ,Ui (si) = rUi∩Uj ,Uj (sj) for all i, j ∈ I there exists a unique s ∈ F(U) where U = ∪i∈I Ui such that rUi,U (s) = si for all i ∈ I. This means that we can extend a locally defined section. Definition 1.3. A morphism of presheaves f : F → G is a natural trans- formation between the functors F and G: for each open set U, there exists a morphism f(U): F(U) → G(U) such that the following diagram is commutative for V ⊂ U. -
Math 231Br: Algebraic Topology
algebraic topology Lectures delivered by Michael Hopkins Notes by Eva Belmont and Akhil Mathew Spring 2011, Harvard fLast updated August 14, 2012g Contents Lecture 1 January 24, 2010 x1 Introduction 6 x2 Homotopy groups. 6 Lecture 2 1/26 x1 Introduction 8 x2 Relative homotopy groups 9 x3 Relative homotopy groups as absolute homotopy groups 10 Lecture 3 1/28 x1 Fibrations 12 x2 Long exact sequence 13 x3 Replacing maps 14 Lecture 4 1/31 x1 Motivation 15 x2 Exact couples 16 x3 Important examples 17 x4 Spectral sequences 19 1 Lecture 5 February 2, 2010 x1 Serre spectral sequence, special case 21 Lecture 6 2/4 x1 More structure in the spectral sequence 23 x2 The cohomology ring of ΩSn+1 24 x3 Complex projective space 25 Lecture 7 January 7, 2010 x1 Application I: Long exact sequence in H∗ through a range for a fibration 27 x2 Application II: Hurewicz Theorem 28 Lecture 8 2/9 x1 The relative Hurewicz theorem 30 x2 Moore and Eilenberg-Maclane spaces 31 x3 Postnikov towers 33 Lecture 9 February 11, 2010 x1 Eilenberg-Maclane Spaces 34 Lecture 10 2/14 x1 Local systems 39 x2 Homology in local systems 41 Lecture 11 February 16, 2010 x1 Applications of the Serre spectral sequence 45 Lecture 12 2/18 x1 Serre classes 50 Lecture 13 February 23, 2011 Lecture 14 2/25 Lecture 15 February 28, 2011 Lecture 16 3/2/2011 Lecture 17 March 4, 2011 Lecture 18 3/7 x1 Localization 74 x2 The homotopy category 75 x3 Morphisms between model categories 77 Lecture 19 March 11, 2011 x1 Model Category on Simplicial Sets 79 Lecture 20 3/11 x1 The Yoneda embedding 81 x2 82