Lecture 15. De Rham Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 15. De Rham Cohomology Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. 138 Lecture 15. de Rham cohomology This leads us to consider the space of ‘non-trivial’ functionals on homotopy classes of submanifolds: Each of these is defined by a k-form ω with exterior derivative zero, but is unchanged if we add the exterior derivative of an arbitrary (k − 1)-form to ω. We call a k-form with exterior derivative zero a k-cocycle, and a k-form which is an exterior derivative of a form is called a k-coboundary. The space of k-cocycles on M is a vector space, denoted Zk(M), and the space of k- coboundaries is then dΩk−1(M), which is contained in Zk(M). 15.2 Cohomology groups and Betti numbers We define the k-th de Rham cohomology group of M, denoted Hk(M), to be Zk(M) Hk(M)= . dΩk−1(M) Thus an element of Hk(M)isdefined by any k-cocycle ω, but is unchanged by changing ω to ω + dη for any (k − 1)-form η, which agrees with the notion we produced before of a ‘nontrivial’ functional on homotopy classes of submanifolds. An element of Hk(M)iscalled a cohomology class, and the cohomology class containing a k-cocycle ω is denoted [ω]. Thus [ω]={ω + dη : η ∈ Ωk−1(M)}. Since the exterior derivative and Stokes’ theorem do not depend in any wayonthe presence of a Riemannian metric on M, the cohomology groups of M depend only on the differentiable structure on M.Itturns out that they in fact depend only on the topological structure of M, and not on the differentiable structure at all — any two homeomorphic manifolds have the same cohomology groups5. The groups Hk(M) are therefore topological invariants, which can be used to distinguish manifolds from each other: If two manifolds have different cohomology groups, they cannot be homeomorphic (let alone diffeomorphic). The k-the cohomology group Hk(M)isareal vector space. The dimension of this vector space is called the kth Betti number of M, and denoted bk(M). 5 The de Rham theorem states that the de Rham cohomology groups are isomorphic to the singular or Cechˇ cohomology groups with real coefficients, and these are defined in purely topological terms. It is also a consequence of this theorem that the cohomology groups are finite dimensional. 15.4 The group H1(M) 139 15.3 The group H0(M) The group H0(M)isrelatively easy to understand: The space Z0(M)isjust the space of functions on M with derivative zero, which is the space of locally constant functions. We interpret Ω−1 as the trivial vector space. Therefore H0(M) Z0(M)=RN where N is the number of connected components of M. Thefore b0(M)isequal to the number of connected components of M. 15.4 The group H1(M) 1 The group H (M)isclosely related to the fundamental group π1(M). We will examine some aspects of this relationship: Proposition 15.4.1 Suppose M is connected. If ω ∈ Z1(M) and [ω] =0 in H1(M), then there exists a smooth curve γ : S1 → M such that " ω(γ):= γ∗ω =0 . S1 Proof. We will prove that if ω(γ)=0for every smooth map γ : S1 → M, then [ω]=0inH1(M). On each connected component of M choose a ‘base point’ x0.Wedefine a ∞ 0 function f ∈ C (M) Ω (M)bysetting f(x0)=0and extending to other points of M according to " f(x)= γ∗ω [0,1] for any γ :[0, 1] → M with γ(0) = x0 and γ(1) = x. This is well-defined, since if γ1 and γ2 are two such curves, then the curve γ1#(−γ2) obtained by concatenating γ1 and −γ2 (i.e. γ2 with orientation reversed) gives a map from S1 to M,sobyassumption " " " − ∗ ∗ − ∗ 0= (γ1#( γ2)) ω = γ1 ω γ2 ω, S1 S1 S1 and so the value of f(x)isindependent of the choice of γ. Finally, df = ω, since in a chart ϕ about x, " 1+t d ∗ df (∂i)=∂if = γ ω = ω(∂i) dt 0 −1 where γ(1 + t)=ϕ (ϕ(x)+tei). This shows that ω = df ,sothat [ω]=0inH1(M). 140 Lecture 15. de Rham cohomology Corollary 15.4.2 If M has finite fundamental group then H1(M)=0.In particular if M is simply connected, then H1(M)=0. Proof. Let ω ∈ Ω1(M) with dω =0.Then for any closed loop γ : S1 → M,we have [γ]n =0inπ1(M) for some integer n. Therefore we have a homotopy F : S1 × [0, 1] → M from γ#γ...#γ to the constant loop c, and Stokes’ theorem gives " " " 0= F ∗dω = (γ# ...#γ)∗ω − c∗ω = nω(γ). S1×[0,1] S1 S1 Since this is true for all closed loops γ, Proposition 15.4.1 applies to show [ω]=0inH1(M), and so H1(M)=0. The same argument tells us something more: In fact H1(M)isasubspace of the dual space of the vector space G ⊗ R, where G is the abelianisation of π1(M), which is the abelian group given by taking π1(M) and imposing the −1 −1 extra relations aba b =1for all elements a and b.Inparticular, b1(M) is no greater than the smallest number of generators of π1(M). In fact it turns out (at least for compact manifolds) that H1(M)isisomorphic to the torsion-free part of the abelianisation of π1(M), as described above. We will not prove this here. 15.5 Homotopy invariance In this section we will prove a remarkable topological invariance property of cohomology groups: They do not change when the space is continuously deformed. More precisely, suppose M and N are two manifolds, and F is a smooth map from M to N. Then the pullback of forms induces a homomorphism of cohomology groups: If ω ∈ Ωk(N)isacocycle, then so is F ∗ω ∈ Ωk(M), since d(F ∗ω)=F ∗(dω). Also, is ω = dη then F ∗ω = F ∗dη = d(F ∗η), so this map is well-defined on cohomology. Proposition 15.5.1 Let F : M × [0, 1] → N be a smooth map, and set ∈ ∗ ft(x)=F (x, t) for each t [0, 1]. Then ft is independent of t. Proof. Let ω ∈ Ωk(N)beacocycle. Then we can write ∗ F ω = ω0 + dt ∧ ω1 ∈ k ∈ k−1 ∗ where ω0 Ω (M) and ω1 Ω (M) for each t. Then ft ω = ω0 for each t. Since F ∗ω is a cocycle, we have ∂ω 0=dF ∗ω = dt ∧ 0 − d ω + ... ∂t M 1 15.6 The Poincar´e Lemma 141 and therefore " " " 1 1 1 ∗ − ∗ − ∂ω0 f1 ω f0 ω = ω0(1) ω0(0) = dt = dM ω1dt = dM ω1dt. 0 ∂t 0 0 ∗ ∗ Therefore f1 ω and f0 ω represent the same cohomology class. Corollary 15.5.2 If the smooth map f : M → N is a homotopy equivalence (that is, there exists a continuous map g : N → M such that f ◦ g and g ◦ f are both homotopic to the identity) then f ∗ is an isomorphism. 15.6 The Poincar´e Lemma We will compute the cohomology groups for a simple example: A subset B in Rn is star-shaped (with respect to the origin) if for every point y ∈ B, the interval {ty : t ∈ [0, 1]} is in B. Proposition 15.6.1 (The Poincar´eLemma). Let B beastar-shaped open set in Rn. Then Hk(B)={0} for k =1,...,n. Proof. We need to show that for k>0every k-cocycle is a k-coboundary. In other words, given a k-form ω on B with dω =0,weneed to find a (k − 1)-form η such that ω = dη.Wewill do this with k replaced by k +1. i0 ∧ ∧ ik ∈ j Write ω = ωi0...ik dx ... dx .Fory B write y = y ej and define " 1 j k ηi1...ik = y t (ωty)ji1...ik dt.
Recommended publications
  • Cohomological Descent on the Overconvergent Site
    COHOMOLOGICAL DESCENT ON THE OVERCONVERGENT SITE DAVID ZUREICK-BROWN Abstract. We prove that cohomological descent holds for finitely presented crystals on the overconvergent site with respect to proper or fppf hypercovers. 1. Introduction Cohomological descent is a robust computational and theoretical tool, central to p-adic cohomology and its applications. On one hand, it facilitates explicit calculations (analo- gous to the computation of coherent cohomology in scheme theory via Cechˇ cohomology); on another, it allows one to deduce results about singular schemes (e.g., finiteness of the cohomology of overconvergent isocrystals on singular schemes [Ked06]) from results about smooth schemes, and, in a pinch, sometimes allows one to bootstrap global definitions from local ones (for example, for a scheme X which fails to embed into a formal scheme smooth near X, one actually defines rigid cohomology via cohomological descent; see [lS07, comment after Proposition 8.2.17]). The main result of the series of papers [CT03,Tsu03,Tsu04] is that cohomological descent for the rigid cohomology of overconvergent isocrystals holds with respect to both flat and proper hypercovers. The barrage of choices in the definition of rigid cohomology is burden- some and makes their proofs of cohomological descent very difficult, totaling to over 200 pages. Even after the main cohomological descent theorems [CT03, Theorems 7.3.1 and 7.4.1] are proved one still has to work a bit to get a spectral sequence [CT03, Theorem 11.7.1]. Actually, even to state what one means by cohomological descent (without a site) is subtle. The situation is now more favorable.
    [Show full text]
  • Homological Algebra
    Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of
    [Show full text]
  • Arxiv:2002.06802V3 [Math.AT] 1 Apr 2021 Aao3082,Jpne-Mail: Japan 390-8621, Nagano E Od N Phrases
    A COMPARISON BETWEEN TWO DE RHAM COMPLEXES IN DIFFEOLOGY KATSUHIKO KURIBAYASHI Abstract. There are two de Rham complexes in diffeology. The original one is due to Souriau and the other one is the singular de Rham complex defined by a simplicial differential graded algebra. We compare the first de Rham cohomology groups of the two complexes within the Cech–deˇ Rham spectral sequence by making use of the factor map which connects the two de Rham complexes. As a consequence, it follows that the singular de Rham cohomology algebra of the irrational torus Tθ is isomorphic to the tensor product of the original de Rham cohomology and the exterior algebra generated by a non- trivial flow bundle over Tθ. 1. Introduction The de Rham complex introduced by Souriau [13] is very beneficial in the study of diffeology; see [6, Chapters 6,7,8 and 9]. In fact, the de Rham calculus is applicable to not only diffeological path spaces but also more general mapping spaces. It is worth mentioning that the de Rham complex is a variant of the codomain of Chen’s iterated integral map [3]. While the complex is isomorphic to the usual de Rham complex if the input diffeological space is a manifold, the de Rham theorem does not hold in general. In [11], we introduced another cochain algebra called the singular de Rham com- plex via the context of simplicial sets. It is regarded as a variant of the cubic de Rham complex introduced by Iwase and Izumida in [9] and a diffeological counter- part of the singular de Rham complex in [1, 15, 16].
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • On the Cohomology of the Finite Special Linear Groups, I
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 54, 216-238 (1978) On the Cohomology of the Finite Special Linear Groups, I GREGORY W. BELL* Fort Lewis College, Durango, Colorado 81301 Communicated by Graham Higman Received April 1, 1977 Let K be a finite field. We are interested in determining the cohomology groups of degree 0, 1, and 2 of various KSL,+,(K) modules. Our work is directed to the goal of determining the second degree cohomology of S&+,(K) acting on the exterior powers of its standard I + l-dimensional module. However, our solution of this problem will involve the study of many cohomology groups of degree 0 and 1 as well. These groups are of independent interest and they are useful in many other cohomological calculations involving SL,+#) and other Chevalley groups [ 11. Various aspects of this problem or similar problems have been considered by many authors, including [l, 5, 7-12, 14-19, 211. There have been many techni- ques used in studing this problem. Some are ad hoc and rely upon particular information concerning the groups in question. Others are more general, but still place restrictions, such as restrictions on the characteristic of the field, the order of the field, or the order of the Galois group of the field. Our approach is general and shows how all of these problems may be considered in a unified. way. In fact, the same method may be applied quite generally to other Chevalley groups acting on certain of their modules [l].
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • Some Notes About Simplicial Complexes and Homology II
    Some notes about simplicial complexes and homology II J´onathanHeras J. Heras Some notes about simplicial homology II 1/19 Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 2/19 Simplicial Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 3/19 Simplicial Complexes Simplicial Complexes Definition Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V . Definition Let α and β be simplices over V , we say α is a face of β if α is a subset of β. Definition An ordered (abstract) simplicial complex over V is a set of simplices K over V satisfying the property: 8α 2 K; if β ⊆ α ) β 2 K Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made of the simplices of cardinality n + 1. J. Heras Some notes about simplicial homology II 4/19 Simplicial Complexes Simplicial Complexes 2 5 3 4 0 6 1 V = (0; 1; 2; 3; 4; 5; 6) K = f;; (0); (1); (2); (3); (4); (5); (6); (0; 1); (0; 2); (0; 3); (1; 2); (1; 3); (2; 3); (3; 4); (4; 5); (4; 6); (5; 6); (0; 1; 2); (4; 5; 6)g J. Heras Some notes about simplicial homology II 5/19 Chain Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J.
    [Show full text]
  • Math 231Br: Algebraic Topology
    algebraic topology Lectures delivered by Michael Hopkins Notes by Eva Belmont and Akhil Mathew Spring 2011, Harvard fLast updated August 14, 2012g Contents Lecture 1 January 24, 2010 x1 Introduction 6 x2 Homotopy groups. 6 Lecture 2 1/26 x1 Introduction 8 x2 Relative homotopy groups 9 x3 Relative homotopy groups as absolute homotopy groups 10 Lecture 3 1/28 x1 Fibrations 12 x2 Long exact sequence 13 x3 Replacing maps 14 Lecture 4 1/31 x1 Motivation 15 x2 Exact couples 16 x3 Important examples 17 x4 Spectral sequences 19 1 Lecture 5 February 2, 2010 x1 Serre spectral sequence, special case 21 Lecture 6 2/4 x1 More structure in the spectral sequence 23 x2 The cohomology ring of ΩSn+1 24 x3 Complex projective space 25 Lecture 7 January 7, 2010 x1 Application I: Long exact sequence in H∗ through a range for a fibration 27 x2 Application II: Hurewicz Theorem 28 Lecture 8 2/9 x1 The relative Hurewicz theorem 30 x2 Moore and Eilenberg-Maclane spaces 31 x3 Postnikov towers 33 Lecture 9 February 11, 2010 x1 Eilenberg-Maclane Spaces 34 Lecture 10 2/14 x1 Local systems 39 x2 Homology in local systems 41 Lecture 11 February 16, 2010 x1 Applications of the Serre spectral sequence 45 Lecture 12 2/18 x1 Serre classes 50 Lecture 13 February 23, 2011 Lecture 14 2/25 Lecture 15 February 28, 2011 Lecture 16 3/2/2011 Lecture 17 March 4, 2011 Lecture 18 3/7 x1 Localization 74 x2 The homotopy category 75 x3 Morphisms between model categories 77 Lecture 19 March 11, 2011 x1 Model Category on Simplicial Sets 79 Lecture 20 3/11 x1 The Yoneda embedding 81 x2 82
    [Show full text]
  • Introduction to Homology
    Introduction to Homology Matthew Lerner-Brecher and Koh Yamakawa March 28, 2019 Contents 1 Homology 1 1.1 Simplices: a Review . .2 1.2 ∆ Simplices: not a Review . .2 1.3 Boundary Operator . .3 1.4 Simplicial Homology: DEF not a Review . .4 1.5 Singular Homology . .5 2 Higher Homotopy Groups and Hurweicz Theorem 5 3 Exact Sequences 5 3.1 Key Definitions . .5 3.2 Recreating Groups From Exact Sequences . .6 4 Long Exact Homology Sequences 7 4.1 Exact Sequences of Chain Complexes . .7 4.2 Relative Homology Groups . .8 4.3 The Excision Theorems . .8 4.4 Mayer-Vietoris Sequence . .9 4.5 Application . .9 1 Homology What is Homology? To put it simply, we use Homology to count the number of n dimensional holes in a topological space! In general, our approach will be to add a structure on a space or object ( and thus a topology ) and figure out what subsets of the space are cycles, then sort through those subsets that are holes. Of course, as many properties we care about in topology, this property is invariant under homotopy equivalence. This is the slightly weaker than homeomorphism which we before said gave us the same fundamental group. 1 Figure 1: Hatcher p.100 Just for reference to you, I will simply define the nth Homology of a topological space X. Hn(X) = ker @n=Im@n−1 which, as we have said before, is the group of n-holes. 1.1 Simplices: a Review k+1 Just for your sake, we review what standard K simplices are, as embedded inside ( or living in ) R ( n ) k X X ∆ = [v0; : : : ; vk] = xivi such that xk = 1 i=0 For example, the 0 simplex is a point, the 1 simplex is a line, the 2 simplex is a triangle, the 3 simplex is a tetrahedron.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Homology Groups of Homeomorphic Topological Spaces
    An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K.
    [Show full text]
  • Bordism and Cobordism
    [ 200 ] BORDISM AND COBORDISM BY M. F. ATIYAH Received 28 March 1960 Introduction. In (10), (11) Wall determined the structure of the cobordism ring introduced by Thorn in (9). Among Wall's results is a certain exact sequence relating the oriented and unoriented cobordism groups. There is also another exact sequence, due to Rohlin(5), (6) and Dold(3) which is closely connected with that of Wall. These exact sequences are established by ad hoc methods. The purpose of this paper is to show that both these sequences are ' cohomology-type' exact sequences arising in the well-known way from mappings into a universal space. The appropriate ' cohomology' theory is constructed by taking as universal space the Thom complex MS0(n), for n large. This gives rise to (oriented) cobordism groups MS0*(X) of a space X. We consider also a 'singular homology' theory based on differentiable manifolds, and we define in this way the (oriented) bordism groups MS0*{X) of a space X. The justification for these definitions is that the main theorem of Thom (9) then gives a 'Poincare duality' isomorphism MS0*(X) ~ MSO^(X) for a compact oriented differentiable manifold X. The usual generalizations to manifolds which are open and not necessarily orientable also hold (Theorem (3-6)). The unoriented corbordism group jV'k of Thom enters the picture via the iso- k morphism (4-1) jrk ~ MS0*n- (P2n) (n large), where P2n is real projective 2%-space. The exact sequence of Wall is then just the cobordism sequence for the triad P2n, P2»-i> ^2n-2> while the exact sequence of Rohlin- Dold is essentially the corbordism sequence of the pair P2n, P2n_2.
    [Show full text]