Cohomological Descent on the Overconvergent Site
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homological Algebra
Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of -
Lecture 15. De Rham Cohomology
Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. -
Etale Homotopy Theory of Non-Archimedean Analytic Spaces
Etale homotopy theory of non-archimedean analytic spaces Joe Berner August 15, 2017 Abstract We review the shape theory of ∞-topoi, and relate it with the usual cohomology of locally constant sheaves. Additionally, a new localization of profinite spaces is defined which allows us to extend the ´etale realization functor of Isaksen. We apply these ideas to define an ´etale homotopy type functor ´et(X ) for Berkovich’s non-archimedean analytic spaces X over a complete non-archimedean field K and prove some properties of the construction. We compare the ´etale homotopy types coming from Tate’s rigid spaces, Huber’s adic spaces, and rigid models when they are all defined. 0 Introduction The ´etale homotopy type of an algebraic variety is one of many tools developed in the last century to use topological machinery to attack algebraic questions. For example sheaves and their cohomology, topoi, spectral sequences, Galois categories, algebraic K-theory, and Chow groups. The ´etale homotopy type enriches ´etale cohomology and torsor data from a collection of groups into a pro-space. This allows us to almost directly apply results from algebraic topol- ogy, with the book-keeping primarily coming from the difference between spaces and pro-spaces. In this paper, we apply this in the context of non-archimedean geometry. The major results are two comparison theorems for the ´etale homo- topy type of non-archimedean analytic spaces, and a theorem indentifying the homotopy fiber of a smooth proper map with the ´etale homotopy type of any geometric fiber. The first comparison theorem concerns analytifications of va- rieties, and states that after profinite completion away from the characteristic arXiv:1708.03657v1 [math.AT] 11 Aug 2017 of the field that the ´etale homotopy type of a variety agrees with that of its analytification. -
Algebraic Topology
Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology . -
Bordism and Cobordism
[ 200 ] BORDISM AND COBORDISM BY M. F. ATIYAH Received 28 March 1960 Introduction. In (10), (11) Wall determined the structure of the cobordism ring introduced by Thorn in (9). Among Wall's results is a certain exact sequence relating the oriented and unoriented cobordism groups. There is also another exact sequence, due to Rohlin(5), (6) and Dold(3) which is closely connected with that of Wall. These exact sequences are established by ad hoc methods. The purpose of this paper is to show that both these sequences are ' cohomology-type' exact sequences arising in the well-known way from mappings into a universal space. The appropriate ' cohomology' theory is constructed by taking as universal space the Thom complex MS0(n), for n large. This gives rise to (oriented) cobordism groups MS0*(X) of a space X. We consider also a 'singular homology' theory based on differentiable manifolds, and we define in this way the (oriented) bordism groups MS0*{X) of a space X. The justification for these definitions is that the main theorem of Thom (9) then gives a 'Poincare duality' isomorphism MS0*(X) ~ MSO^(X) for a compact oriented differentiable manifold X. The usual generalizations to manifolds which are open and not necessarily orientable also hold (Theorem (3-6)). The unoriented corbordism group jV'k of Thom enters the picture via the iso- k morphism (4-1) jrk ~ MS0*n- (P2n) (n large), where P2n is real projective 2%-space. The exact sequence of Wall is then just the cobordism sequence for the triad P2n, P2»-i> ^2n-2> while the exact sequence of Rohlin- Dold is essentially the corbordism sequence of the pair P2n, P2n_2. -
Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds. -
HODGE FILTERED COMPLEX BORDISM 11 Given by the Constant Presheaf with Value E
HODGE FILTERED COMPLEX BORDISM MICHAEL J. HOPKINS AND GEREON QUICK Abstract. We construct Hodge filtered cohomology groups for complex man- ifolds that combine the topological information of generalized cohomology the- ories with geometric data of Hodge filtered holomorphic forms. This theory provides a natural generalization of Deligne cohomology. For smooth complex algebraic varieties, we show that the theory satisfies a projective bundle for- mula and A1-homotopy invariance. Moreover, we obtain transfer maps along projective morphisms. 1. Introduction For a complex manifold, Deligne cohomology is an elegant way to combine the topological information of integral cohomology with the geometric data of holomor- n phic forms. For a given p, the Deligne cohomology group HD(X; Z(p)) of a complex manifold X is defined to be the nth hypercohomology of the Deligne complex ZD(p) p (2πi) 1 d d p−1 0 → Z −−−−→OX → ΩX −→ ... −→ ΩX → 0 k of sheaves over X, where ΩX denotes the sheaf of holomorphic k-forms. Deligne cohomology is an important tool for many fundamental questions in al- gebraic, arithmetic and complex geometry. Let us just highlight one of the algebraic geometric applications of Deligne cohomology. Let X be a smooth projective com- plex variety. The associated complex manifold is an example of a compact K¨ahler manifold. Let CHpX be the Chow group of codimension p algebraic cycles modulo rational equivalence. There is the classical cycle map p 2p clH : CH X → H (X; Z) from Chow groups to the integral cohomology of the associated complex manifold of X. This map sends an irreducible subvariety Z ⊂ X of codimension p in X to arXiv:1212.2173v3 [math.AT] 27 Aug 2014 the Poincar´edual of the fundamental class of a resolution of singularities of Z. -
EQUIVARIANT MOTIVIC HOMOTOPY THEORY Table of Contents 1
EQUIVARIANT MOTIVIC HOMOTOPY THEORY GUNNAR CARLSSON AND ROY JOSHUA Abstract. In this paper, we develop the theory of equivariant motivic homotopy theory, both unstable and stable. While our main interest is the case when the group is pro-finite, we discuss our results in a more general setting so as to be applicable to other contexts, for example when the group is in fact a smooth group scheme. We also discuss 1 how A -localization behaves with respect to ring and module spectra and also with respect to mod-l-completion, where l is a fixed prime. In forthcoming papers, we apply the theory developed here to produce a theory of Spanier-Whitehead duality and Becker-Gottlieb transfer in this framework, and explore various applications of the transfer. Table of contents 1. Introduction 2. The basic framework of equivariant motivic homotopy theory: the unstable theory 3. The basic framework of equivariant motivic homotopy theory: the stable theory 4. Effect of A1-localization on ring and module structures and on mod-l completions 5. References. The second author was supported by the IHES, the MPI (Bonn) and a grant from the NSA. 1 2 Gunnar Carlsson and Roy Joshua 1. Introduction The purpose of this paper is to set up a suitable framework for a series of papers exploring the notions of Spanier-Whitehead duality and Becker-Gottlieb transfer in the setting of stable motivic homotopy theory and their applications. Some of the notable applications we have in mind are the conjectures due to the first author on equivariant algebraic K-theory, equivariant with respect to the action of a Galois group, see [Carl1]. -
Hochschild Cohomology
Hochschild Cohomology Sarah Witherspoon Introduction At the end of the nineteenth century, Poincar´e created invariants to distinguish different topological spaces and their features, foreshadowing the homology and cohomol- ogy groups that would appear later. Towards the middle of the twentieth century, these notions were imported from topology to algebra: The subject of group homology and cohomology was founded by Eilenberg and Mac Lane, and the subject of Hochschild homology and cohomology by Hochschild. The uses of homological techniques contin- ued to grow and spread, spilling out of algebra and topol- ogy into many other fields. In this article we will focus on Hochschild cohomol- ogy, which now appears in the settings of algebraic geom- etry, category theory, functional analysis, topology, and Gerhard Hochschild, 2003. beyond. There are strong connections to cyclic homology and K-theory. Many mathematicians use Hochschild co- We will begin this story by setting the scene: We are in- homology in their research, and many continue to develop terested here in a ring 퐴 that is also a vector space over a theoretical and computational techniques for better under- field 푘 such as ℝ or ℂ. We require the multiplication map standing. Hochschild cohomology is a broad and growing on 퐴 to be bilinear; that is, the map 퐴 × 퐴 → 퐴 given by field, with connections to diverse parts of mathematics. (푎, 푏) ↦ 푎푏 for 푎, 푏 in 퐴 is bilinear (over 푘). A ring with Our scope here is exclusively Hochschild cohomology this additional structure is called an algebra over 푘. Some for algebras, including Hochschild’s original design [3] examples are polynomial rings 퐴 = 푘[푥1, … , 푥푛], which are and just a few of the many important uses and recent de- commutative, and matrix rings 퐴 = 푀푛(푘), which are non- velopments in algebra. -
Invertible Objects in Motivic Homotopy Theory
Invertible Objects in Motivic Homotopy Theory Tom Bachmann M¨unchen2016 Invertible Objects in Motivic Homotopy Theory Tom Bachmann Dissertation an der Fakult¨atf¨urMathematik, Informatik und Statistik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Tom Bachmann aus Chemnitz M¨unchen, den 19. Juli 2016 Erstgutachter: Prof. Dr. Fabien Morel Zweitgutachter: Prof. Dr. Marc Levine Drittgutachter: Prof. Dr. math. Oliver R¨ondigs Tag der m¨undlichen Pr¨ufung:18.11.2016 Eidesstattliche Versicherung Bachmann, Tom Name, Vorname Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema Invertible Objects in Motivic Homotopy Theory selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. München, 1.12.2016 Ort, Datum Unterschrift Doktorandin/Doktorand Eidesstattliche Versicherung Stand: 31.01.2013 vi Abstract If X is a (reasonable) base scheme then there are the categories of interest in stable motivic homotopy theory SH(X) and DM(X), constructed by Morel-Voevodsky and others. These should be thought of as generalisations respectively of the stable homotopy category SH and the derived category of abelian groups D(Ab), which are studied in classical topology, to the \world of smooth schemes over X". Just like in topology, the categories SH(X); DM(X) are symmetric monoidal: there is a bifunctor (E; F ) 7! E ⊗ F satisfying certain properties; in particular there is a unit 1 satisfying E ⊗ 1 ' 1 ⊗ E ' E for all E. -
Cyclic Homology, Cdh-Cohomology and Negative K-Theory
Annals of Mathematics, 167 (2008), 549–573 Cyclic homology, cdh-cohomology and negative K-theory By G. Cortinas,˜ C. Haesemeyer, M. Schlichting, and C. Weibel* Abstract We prove a blow-up formula for cyclic homology which we use to show that infinitesimal K-theory satisfies cdh-descent. Combining that result with some computations of the cdh-cohomology of the sheaf of regular functions, we verify a conjecture of Weibel predicting the vanishing of algebraic K-theory of a scheme in degrees less than minus the dimension of the scheme, for schemes essentially of finite type over a field of characteristic zero. Introduction The negative algebraic K-theory of a singular variety is related to its ge- ometry. This observation goes back to the classic study by Bass and Murthy [1], which implicitly calculated the negative K-theory of a curve X. By def- inition, the group K−n(X) describes a subgroup of the Grothendieck group 1 n K0(Y ) of vector bundles on Y = X × (A −{0}) . The following conjecture was made in 1980, based upon the Bass-Murthy calculations, and appeared in [38, 2.9]. Recall that if F is any contravariant functor on schemes, a scheme X is called F -regular if F (X) → F (X × Ar)is an isomorphism for all r ≥ 0. K-dimension Conjecture 0.1. Let X be a Noetherian scheme of di- mension d. Then Km(X)=0for m<−d and X is K−d-regular. In this paper we give a proof of this conjecture for X essentially of finite type over a field F of characteristic 0; see Theorem 6.2. -
Motivic Cohomology, K-Theory and Topological Cyclic Homology
Motivic cohomology, K-theory and topological cyclic homology Thomas Geisser? University of Southern California, [email protected] 1 Introduction We give a survey on motivic cohomology, higher algebraic K-theory, and topo- logical cyclic homology. We concentrate on results which are relevant for ap- plications in arithmetic algebraic geometry (in particular, we do not discuss non-commutative rings), and our main focus lies on sheaf theoretic results for smooth schemes, which then lead to global results using local-to-global methods. In the first half of the paper we discuss properties of motivic cohomology for smooth varieties over a field or Dedekind ring. The construction of mo- tivic cohomology by Suslin and Voevodsky has several technical advantages over Bloch's construction, in particular it gives the correct theory for singu- lar schemes. But because it is only well understood for varieties over fields, and does not give well-behaved ´etalemotivic cohomology groups, we discuss Bloch's higher Chow groups. We give a list of basic properties together with the identification of the motivic cohomology sheaves with finite coefficients. In the second half of the paper, we discuss algebraic K-theory, ´etale K- theory and topological cyclic homology. We sketch the definition, and give a list of basic properties of algebraic K-theory, sketch Thomason's hyper- cohomology construction of ´etale K-theory, and the construction of topolog- ical cyclic homology. We then give a short overview of the sheaf theoretic properties, and relationships between the three theories (in many situations, ´etale K-theory with p-adic coefficients and topological cyclic homology agree).