Spectral Sequences Means of the Isomorphism of the Previous Step K to the Sub- C 2000 M

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Sequences Means of the Isomorphism of the Previous Step K to the Sub- C 2000 M p;q p;q Geometria Superiore Reference Cards for k > 3 we can choose Bk+1(E2 ) and Zk+1(E2 ) as the p;q p;q subobjects of Zk(E2 ) containing Bk(E2 ) and identified by Spectral Sequences means of the isomorphism of the previous step k to the sub- c 2000 M. Cailotto, Permissions on last. v0.0 objects im(dp−k;q+k−1) and ker(dp;q) of Ep;q respectively; in Send comments and corrections to [email protected] k k k this way we have Z (Ep;q)B (Ep;q) ' Ep;q : Generalities. k+1 2 k+1 2 k+1 Definitions Let A be an abelian category. Define Af the So we have a long chain of inclusions: quasi-abelian category of filtered objects of A: objects are ob- p;q p;q p;q p;q E = Z2(E ) ⊇ ··· ⊇ Zk(E ) ⊇ Zk+1(E ) ⊇ ··· ⊇ jects A of A with a (decreasing) filtration, i.e. a family of 2 2 2 2 subobjects (F p(A)) of A s.t. F p+1(A) ⊆ F p(A) for every ··· ⊇ B (Ep;q) ⊇ B (Ep;q) ⊇ ··· ⊇ B (Ep;q) = 0 p2Z k+1 2 k 2 2 2 p 2 Z; morphisms ' : A−!B are morphisms of A respecting the filtrations, i.e. '(F p(A)) ⊆ F p(B). and the definition continues with: p;q p;q p (d) for every p;q 2 Z two subobjects B1(E2 ) and Z1(E2 ) of The filtration (F (A)) of A is: p;q p;q p;q p2Z E2 such that Z1(E2 ) ⊇ B1(E2 ) and for every k T p (i) separated if p2 F (A) = 0, p;q p;q p;q p;q Z Zk(E2 ) ⊇ Z1(E2 ) ⊇ B1(E2 ) ⊇ Bk(E2 ) (ii) coseparated (or exhaustive) if S F p(A) = A, p2 p;q p;q p;q Z and define: E = Z1(E ) B1(E ); p q 1 2 2 (iii) discrete if there exists p 2 Z s.t. F (A) = 0 (so F (A) = 0 n (e) a family (E )n2 of objects of A ; for every q > p), Z f ∼ p q (f) a family (βp;q) of isomorphisms βp;q : Ep;q!gr (Ep+q). (iv) codiscrete if there exists p 2 Z s.t. F (A) = A (so F (A) = p;q2Z 1 p A for every q 6 p), Remarks on the definition of spectral sequences: (v) finite if it is discrete and codiscrete. (1) the construction of chains of subobjects in (c) can be per- Remark that discrete (resp. codiscrete) filtrations are sepa- formed for every r in the spectral sequence, defining for rated (resp. exhaustive). p;q p;q p;q every k > r the subobjects Bk(Er ) and Zk(Er ) of Er . p p+1 p;q For A 2 Af : grp(A) := F (A) F (A) 2 A, and if A admits (2) for a fixed n 2 Z, the family fE1 gp+q=n gives a measure L of the skips in the filtration of En: in fact, if the terms arbitrary direct sums, define: gr(A) := grp(A) 2 A, the p2Z L p;q∼ n exist, we have E1 =gr(E ). associated graded object. This gives a functor gr : Af !A. p+q=n p;q n 0 A morphism of two spectral sequences E = (Er ;E ) and E = Let ' : A−!B be a morphism in Af ; then: 0p;q 0n p;q n (E r ;E ) is the datum of f = (fr ;f ) where: (1) if gr' is a monomorphism, and the filtration of A is ex- (a) fp;q : Ep;q −! E0p;q are morphisms of A, haustive and separated, then ' is a monomorphism; r r r (b) compatibility with the differentials: commutation of (2) if gr' is an epimorphism, and the filtration of B is exhaus- p;q tive and discrete, then ' is an epimorphism; p;q fr 0p;q Er −−−−−−−−−−−! E r (20) if gr' is an epimorphism, the filtration of B is exhaustive p;q ? ? 0p;q dr y y d r and separated, the filtration of A induces a complete topol- p+r;q−r+1 0p+r;q−r+1 Er −−−−−−−! E r ogy, then ' is an epimorphism; p+r;q−r+1 fr (3) if gr' is an isomorphism, the filtration of A is exhaustive (c) compatibility with the isomorphisms: and separated, and the filtration of B is exhaustive and p;q p;q Z (E ) f¯p;q Z (E0 ) discrete, then ' is an isomorphism. r+1 r −−−−−!r r+1 r p;q 0p;q Br+1(Er ) Br+1(E r ) SpS(A): the category of spectral sequences of A. p;q ? ? 0p;q αr y y α r p;q n p;q 0p;q A spectral sequence E = (E ) r 2 ;(E ) in A is the E −−−−−−−−−! E r > n2Z r+1 p;q r+1 p;q2Z f data of: r+1 ¯p;q p;q commutes, where the fr define the morphisms in cohomology; (a) a family (Er ) of objects of A defined for r > 2 and p;q 2 Z, p;q p;q p;q p+r;q−r+1 (d) compatibility with the 1 level (b) a family of morphisms (dr ) where dr : Er ! Er fp;q B (Ep;q) ⊆ B (E0p;q), fp;q Z (Ep;q) ⊆ Z (E0p;q) p;q p−r;q+r−1 2 1 2 1 2 2 1 2 1 2 and dr ◦dr = 0 for all indices; in such a way that we induce morphisms: f¯p;q : Ep;q ! E0p;q; p;q p;q 1 1 1 so that we can define: Zr+1(Er ) = ker(dr ) and (e) fn : En ! E0n morphisms of filtered objects; p;q p−r;q+r−1 Br+1(Er ) = im(dr ) for which p;q p;q p;q (f) finally the compatibility with the limit Br+1(Er ) ⊆ Zr+1(Er ) ⊆ Er and we require: f¯p;q p;q Ep;q −−−−−−−−−−−!1 E0p;q (c) a family (αr ) of isomorphisms 1 1 p;q ? ? 0p;q ∼ β β αp;q : Z (Ep;q)B (Ep;q) −! Ep;q ; y y r r+1 r r+1 r r+1 p+q 0p+q grp(E ) −−−−−−! grp(E ) : gr (f p+q ) we can define for every p;q 2 Z two families of subobjects of p Ep;q, B (Ep;q) and Z (Ep;q), in such a way that Ep;q ' 2 k 2 k 2 k p;q p;q Remarks on the definition of morphisms of spectral sequences: Zk(E2 ) Bk(E2 ) by induction: p;q p;q p;q (1) if a morphisms f of spectral sequences has the property for k = 2 put B2(E ) = 0 and Z2(E ) = E , p;q 2 2 2 that for a fixed r all fr are isomorphisms, then by (c) for p;q for k = 3 already defined, all s > r the fs are also isomorphisms. 1 GeoSupRC - Spectral Sequences c 2000 by MC n−q(n);q(n) n−q(n);q(n) n−q(n);q(n) (2) a morphism of spectral sequences is an isomorphism if and Er for all s r, so that E1 = Er p;q > only if: the f2 are isomorphisms for all p;q 2 Z, in the if the spectral sequence is weakly convergent: the limit of the condition (d) equalities hold, and the fn are isomorphisms sequence can be read at level r. for all n 2 Z. (2) if moreover the filtrations on the limit are exhaustive and sepa- p n Convergence and regularity conditions: rated, then they are finite and F (E ) = 0 for p > n−q(n) and p n n F (E ) = E for p 6 n−q(n); we have also an isomorphism (o) a spectral sequence is weakly convergent if n n−q(n);q(n) E ' Er . B (Ep;q) = S B (Ep;q) Z (Ep;q) = T Z (Ep;q) 1 2 k 2 1 2 k 2 0 (0 ) (Deligne) a spectral sequence E is degenerated in Er0 , for r0 k>2 k>2 p;q > 2, if it is biregular and for any r > r0 we have dr = 0 for all p hold, i.e. if the data of (d) are determined by the previous p p+q p;q and q; then Er0 = E1 and gr E = Er0 . points. A weakly convergent spectral sequence is: (10) in the category of R-modules of finite length with R a ring, (i) regular if P p;q n (o) p+q=n lgEr > lgE ; (1) for any p;q the decreasing sequence Z (Ep;q) becomes k 2 k (i) equality holds for r = r if and only if E degenerates at r ; stationary, 0 0 n n (ii) if E = 0 except for a finite number of n, then for all r > 2 (2) for any n the filtration of E is discrete and exhaustive. P p+q p;q P n n p;q we have p;q(−) lgEr = n(−) lgE . This implies that for a fixed pair (p;q) we have Z1(E2 ) = Z (Ep;q) for k 0, but depending on p and q. k 2 Homological and Spherical Sp.Seq. (ii) co-regular if: (1) for any p;q the increasing sequence B (Ep;q) becomes Cohomological spectral sequences: E is cohomological if k 2 k p;q E2 = 0 whenever p < 0 or q < 0.
Recommended publications
  • The Leray-Serre Spectral Sequence
    THE LERAY-SERRE SPECTRAL SEQUENCE REUBEN STERN Abstract. Spectral sequences are a powerful bookkeeping tool, used to handle large amounts of information. As such, they have become nearly ubiquitous in algebraic topology and algebraic geometry. In this paper, we take a few results on faith (i.e., without proof, pointing to books in which proof may be found) in order to streamline and simplify the exposition. From the exact couple formulation of spectral sequences, we ∗ n introduce a special case of the Leray-Serre spectral sequence and use it to compute H (CP ; Z). Contents 1. Spectral Sequences 1 2. Fibrations and the Leray-Serre Spectral Sequence 4 3. The Gysin Sequence and the Cohomology Ring H∗(CPn; R) 6 References 8 1. Spectral Sequences The modus operandi of algebraic topology is that \algebra is easy; topology is hard." By associating to n a space X an algebraic invariant (the (co)homology groups Hn(X) or H (X), and the homotopy groups πn(X)), with which it is more straightforward to prove theorems and explore structure. For certain com- putations, often involving (co)homology, it is perhaps difficult to determine an invariant directly; one may side-step this computation by approximating it to increasing degrees of accuracy. This approximation is bundled into an object (or a series of objects) known as a spectral sequence. Although spectral sequences often appear formidable to the uninitiated, they provide an invaluable tool to the working topologist, and show their faces throughout algebraic geometry and beyond. ∗;∗ ∗;∗ Loosely speaking, a spectral sequence fEr ; drg is a collection of bigraded modules or vector spaces Er , equipped with a differential map dr (i.e., dr ◦ dr = 0), such that ∗;∗ ∗;∗ Er+1 = H(Er ; dr): That is, a bigraded module in the sequence comes from the previous one by taking homology.
    [Show full text]
  • Spectral Sequences: Friend Or Foe?
    SPECTRAL SEQUENCES: FRIEND OR FOE? RAVI VAKIL Spectral sequences are a powerful book-keeping tool for proving things involving com- plicated commutative diagrams. They were introduced by Leray in the 1940's at the same time as he introduced sheaves. They have a reputation for being abstruse and difficult. It has been suggested that the name `spectral' was given because, like spectres, spectral sequences are terrifying, evil, and dangerous. I have heard no one disagree with this interpretation, which is perhaps not surprising since I just made it up. Nonetheless, the goal of this note is to tell you enough that you can use spectral se- quences without hesitation or fear, and why you shouldn't be frightened when they come up in a seminar. What is different in this presentation is that we will use spectral sequence to prove things that you may have already seen, and that you can prove easily in other ways. This will allow you to get some hands-on experience for how to use them. We will also see them only in a “special case” of double complexes (which is the version by far the most often used in algebraic geometry), and not in the general form usually presented (filtered complexes, exact couples, etc.). See chapter 5 of Weibel's marvelous book for more detailed information if you wish. If you want to become comfortable with spectral sequences, you must try the exercises. For concreteness, we work in the category vector spaces over a given field. However, everything we say will apply in any abelian category, such as the category ModA of A- modules.
    [Show full text]
  • Some Extremely Brief Notes on the Leray Spectral Sequence Greg Friedman
    Some extremely brief notes on the Leray spectral sequence Greg Friedman Intro. As a motivating example, consider the long exact homology sequence. We know that if we have a short exact sequence of chain complexes 0 ! C∗ ! D∗ ! E∗ ! 0; then this gives rise to a long exact sequence of homology groups @∗ ! Hi(C∗) ! Hi(D∗) ! Hi(E∗) ! Hi−1(C∗) ! : While we may learn the proof of this, including the definition of the boundary map @∗ in beginning algebraic topology and while this may be useful to know from time to time, we are often happy just to know that there is an exact homology sequence. Also, in many cases the long exact sequence might not be very useful because the interactions from one group to the next might be fairly complicated. However, in especially nice circumstances, we will have reason to know that certain homology groups vanish, or we might be able to compute some of the maps here or there, and then we can derive some consequences. For example, if ∼ we have reason to know that H∗(D∗) = 0, then we learn that H∗(E∗) = H∗−1(C∗). Similarly, to preserve sanity, it is usually worth treating spectral sequences as \black boxes" without looking much under the hood. While the exact details do sometimes come in handy to specialists, spectral sequences can be remarkably useful even without knowing much about how they work. What spectral sequences look like. In long exact sequence above, we have homology groups Hi(C∗) (of course there are other ways to get exact sequences).
    [Show full text]
  • The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017)
    The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017) Richard Hughes May 12, 2017 1 Preliminaries on derived functors. 1.1 A computational definition of right derived functors. We begin by recalling that a functor between abelian categories F : A!B is called left exact if it takes short exact sequences (SES) in A 0 ! A ! B ! C ! 0 to exact sequences 0 ! FA ! FB ! FC in B. If in fact F takes SES in A to SES in B, we say that F is exact. Question. Can we measure the \failure of exactness" of a left exact functor? The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which we will define below, are in a precise sense the unique extension of F to an exact functor. Recall that an object I 2 A is called injective if the functor op HomA(−;I): A ! Ab is exact. An injective resolution of A 2 A is a quasi-isomorphism in Ch(A) A ! I• = (I0 ! I1 ! I2 !··· ) where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every A 2 A embeds into some injective object, we say that A has enough injectives { in this situation it is a theorem that every object admits an injective resolution. So, for A 2 A choose an injective resolution A ! I• and define the pth right derived functor of F applied to A by RpF (A) := Hp(F (I•)): Remark • You might worry about whether or not this depends upon our choice of injective resolution for A { it does not, up to canonical isomorphism.
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • A Algebraic Varieties
    A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S.
    [Show full text]
  • A Users Guide to K-Theory Spectral Sequences
    A users guide to K-theory Spectral sequences Alexander Kahle [email protected] Mathematics Department, Ruhr-Universt¨at Bochum Bonn-Cologne Intensive Week: Tools of Topology for Quantum Matter, July 2014 A. Kahle A users guide to K-theory The Atiyah-Hirzebruch spectral sequence In the last lecture we have learnt that there is a wonderful connection between topology and analysis on manifolds: K-theory. This begs the question: how does one calculate the K-groups? A. Kahle A users guide to K-theory From CW-complexes to K-theory We saw that a CW-decomposition makes calculating cohomology easy(er). It's natural to wonder whether one can somehow use a CW-decomposition to help calculate K-theory. We begin with a simple observation. A simple observation Let X have a CW-decomposition: ? ⊆ Σ0 ⊆ Σ1 · · · ⊆ Σn = X : Define K • (X ) = ker i ∗ : K •(X ) ! K •(Σ ): ZPk k This gives a filtration of K •(X ): K •(X ) ⊇ K • (X ) ⊇ · · · ⊇ K • (X ) = 0: ZP0 ZPn A. Kahle A users guide to K-theory One might hope that one can calculate the K-theory of a space inductively, with each step moving up one stage in the filtration. This is what the Atiyah-Hirzebruch spectral sequence does: it computes the groups K • (X ): ZPq=q+1 What then remains is to solve the extension problem: given that one knows K • (X ) and K • (X ), one must ZPq=q+1 q+1 somehow determine K • (X ), which fits into ZPq 1 ! K • (X ) ! K • (X ) ! K • (X ) ! 1: ZPq=q+1 ZPq ZPq+1 A.
    [Show full text]
  • Finite Order Vinogradov's C-Spectral Sequence
    Finite order formulation of Vinogradov’s C-spectral sequence Raffaele Vitolo Dept. of Mathematics “E. De Giorgi”, University of Lecce via per Arnesano, 73100 Lecce, Italy and Diffiety Institute, Russia email: Raff[email protected] Abstract The C-spectral sequence was introduced by Vinogradov in the late Seventies as a fundamental tool for the study of algebro-geometric properties of jet spaces and differential equations. A spectral sequence arise from the contact filtration of the modules of forms on jet spaces of a fibring (or on a differential equation). In order to avoid serious technical difficulties, the order of the jet space is not fixed, i.e., computations are performed on spaces containing forms on jet spaces of any order. In this paper we show that there exists a formulation of Vinogradov’s C- spectral sequence in the case of finite order jet spaces of a fibred manifold. We compute all cohomology groups of the finite order C-spectral sequence. We obtain a finite order variational sequence which is shown to be naturally isomorphic with Krupka’s finite order variational sequence. Key words: Fibred manifold, jet space, variational bicomplex, variational se- quence, spectral sequence. 2000 MSC: 58A12, 58A20, 58E99, 58J10. Introduction arXiv:math/0111161v1 [math.DG] 13 Nov 2001 The framework of this paper is that of the algebro-geometric formalism for differential equations. This branch of mathematics started with early works by Ehresmann and Spencer (mainly inspired by Lie), and was carried out by several people. One funda- mental aspect is that a natural setting for dealing with global properties of differential equations (such as symmetries, integrability and calculus of variations) is that of jet spaces (see [17, 18, 21] for jets of fibrings and [13, 26, 27] for jets of submanifolds).
    [Show full text]
  • Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
    On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories.
    [Show full text]
  • 2 Sheaves and Cohomology
    2 Sheaves and Cohomology 2.1 Sheaves and Presheaves We fix a topological space X. Later we will include assumptions that are satisfied by smooth manifolds. 2.1.1 Definitions and Examples Definition 2.1. A presheaf of abelian groups F on X assigns to each open U ⊆ X an abelian group F (U) = Γ(U; F ) and for every inclusion of open sets V ⊆ U a homomorphism of abelian groups F ρUV : F (U) ! F (V ), often called the restriction map, satisfying F 1 [P1] ρUU = F(U) F F F [P2] for W ⊆ V ⊆ U, we have ρVW ◦ ρUV = ρUW . If F and G are two presheaves (of abelian groups) on X, then a morphism ' : F ! G consists of the data of a morphism 'U : F (U) ! G (U) for each open set U ⊆ X such that if V ⊆ U is an inclusion, then we have commutative diagrams 'U F (U) / G (U) F G ρUV ρUV (V ) / (V ): F 'V G Remark 2.2. We may form a category TopX whose objects are open sets in X and whose mor- phisms are simply inclusions of open sets. Then the above definition says that a presheaf is a ◦ contravariant functor TopX ! Ab, and that a morphism of presheaves is a natural transforma- tion of the associated functors. Definition 2.3. A sheaf F of abelian groups on X is a presheaf which, for any open set U ⊆ X and any open covering fUigi2I of U, satisfies the two additional properties: [S1] if s 2 F (U) is such that sjUi = 0 for all i 2 I, then s = 0; [S2] if si 2 F (Ui) such that sijUi\Uj = sjjUi\Uj for all i; j 2 I, then there exists s 2 F (U) such that sjUi = si for each i.
    [Show full text]
  • Differential Geometry of Complex Vector Bundles
    DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi This is re-typesetting of the book first published as PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN 15 DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi Kan^oMemorial Lectures 5 Iwanami Shoten, Publishers and Princeton University Press 1987 The present work was typeset by AMS-LATEX, the TEX macro systems of the American Mathematical Society. TEX is the trademark of the American Mathematical Society. ⃝c 2013 by the Mathematical Society of Japan. All rights reserved. The Mathematical Society of Japan retains the copyright of the present work. No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copy- right owner. Dedicated to Professor Kentaro Yano It was some 35 years ago that I learned from him Bochner's method of proving vanishing theorems, which plays a central role in this book. Preface In order to construct good moduli spaces for vector bundles over algebraic curves, Mumford introduced the concept of a stable vector bundle. This concept has been generalized to vector bundles and, more generally, coherent sheaves over algebraic manifolds by Takemoto, Bogomolov and Gieseker. As the dif- ferential geometric counterpart to the stability, I introduced the concept of an Einstein{Hermitian vector bundle. The main purpose of this book is to lay a foundation for the theory of Einstein{Hermitian vector bundles. We shall not give a detailed introduction here in this preface since the table of contents is fairly self-explanatory and, furthermore, each chapter is headed by a brief introduction.
    [Show full text]