View of Other Algorithms Such As Blowfish, Twofish, and Skipjack • Hashing Algorithms Including MD5, MD6, SHA, Gost, RIPMD 256 and Others

Total Page:16

File Type:pdf, Size:1020Kb

View of Other Algorithms Such As Blowfish, Twofish, and Skipjack • Hashing Algorithms Including MD5, MD6, SHA, Gost, RIPMD 256 and Others ProTech Professional Technical Services, Inc. EC-Council Certified Encryption Specialist (ECES) Course Summary Description The EC-Council Certified Encryption Specialist (ECES) program introduces professionals and students to the field of cryptography. The participants will learn the foundations of modern symmetric and key cryptography including the details of algorithms such as Feistel Networks, DES, and AES. Other topics introduced: • Overview of other algorithms such as Blowfish, Twofish, and Skipjack • Hashing algorithms including MD5, MD6, SHA, Gost, RIPMD 256 and others. • Asymmetric cryptography including thorough descriptions of RSA, Elgamal, Elliptic Curve, and DSA. • Significant concepts such as diffusion, confusion, and Kerkchoff’s principle. Course Outline Course Participants will also be provided a practical application of the following: • How to set up a VPN • Encrypt a drive • Hands-on experience with steganography • Hands on experience in cryptographic algorithms ranging from classic ciphers like Caesar cipher to modern day algorithms such as AES and RSA. Objectives By the end of this course, students will learn: • Types of Encryption Standards and their • Correct and incorrect deployment of differences encryption technologies • How to select the best standard for your • Common mistakes made in organization implementing encryption technologies • How to enhance your pen-testing • Best practices when implementing knowledge in encryption encryption technologies Topics • Introduction and History of Cryptography • Applications of Cryptography • Symmetric Cryptography & Hashes • Cryptanalysis • Number Theory and Asymmetric Cryptography Audience Anyone involved in the selection and implementation of VPN’s or digital certificates should attend this course. Without understanding the cryptography at some depth, people are limited to following marketing hype. Understanding the actual cryptography allows you to know which one to select. A person successfully completing this course will be able to select the encryption standard that is most beneficial to their organization and understand how to effectively deploy that technology. Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically. ProTech Professional Technical Services, Inc. EC-Council Certified Encryption Specialist (ECES) Course Summary Audience (cont.) This course is excellent for ethical hackers and penetration testing professionals as most penetration testing courses skip cryptanalysis completely. Many penetration testing professionals testing usually don’t attempt to crack cryptography. A basic knowledge of cryptanalysis is very beneficial to any penetration testing. Duration Three Days Course Outline Course Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically. ProTech Professional Technical Services, Inc. EC -Council Certified Encryption Specialist (ECES) Course Outline 7. Whitening I. Introduction and History of 8. Advanced Encryption Standard Cryptography (AES) A. What is Cryptography? 9. AES General Overview B. History of Cryptography 10. AES Specifics C. Mono-Alphabet Substitution 11. Blowfish 1. Caesar Cipher 12. Serpent 2. Atbash Cipher 13. Twofish 3. Affine Cipher 14. Skipjack 4. ROT13 Cipher 15. International Data Encryption 5. Scytale Algorithm (IDEA) 6. Single Substitution Weaknesses 16. CAST Course Outline Course D. Multi-Alphabet Substitution 17. Tiny Encryption Algorithm (TEA) 1. Cipher Disk 18. SHARK 2. Vigenère Cipher I. Symmetric Algorithm Methods 3. Vigenère Cipher: Example 1. Electronic Codebook (ECB) 4. Breaking the Vigenère Cipher 2. Cipher-Block Chaining (CBC) 5. Playfair Cipher 3. Propagating Cipher-Block 6. ADFGVX Cipher Chaining (PCBC) E. Homophonic Substitution 4. Cipher Feedback (CFB) F. Null Ciphers 5. Output Feedback (OFB) G. Book Ciphers 6. Counter (CTR) H. Rail Fence Ciphers 7. Initialization Vector (IV) I. The Enigma Machine J. Symmetric Stream Ciphers J. CrypTool 1. Example of Symmetric Stream Ciphers: RC4 II. Symmetric Cryptography & Hashes 2. Example of Symmetric Stream A. Symmetric Cryptography Ciphers: FISH B. Information Theory 3. Example of Symmetric Stream 1. Information Theory Ciphers: PIKE Cryptography Concepts K. Hash Function C. Kerckhoffs’s Principle 1. Hash – Salt D. Substitution 2. MD5 E. Transposition 3. The MD5 Algorithm F. Binary Math 4. MD6 1. Binary AND 5. Secure Hash Algorithm (SHA) 2. Binary OR 6. FORK-256 3. Binary XOR 7. RIPEMD-160 G. Block Cipher vs. Stream Cipher 8. GOST H. Symmetric Block Cipher Algorithms 9. Tiger 1. Basic Facts of the Feistel 10. MAC and HMAC Function L. CryptoBench 2. The Feistel Function 3. Unbalanced Feistel Cipher 4. Data Encryption Standard (DES) 5. 3DES 6. DESx Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically. ProTech Professional Technical Services, Inc. EC -Council Certified Encryption Specialist (ECES) Course Outline (cont.) III. Number Theory and Asymmetric D. Certificate Authority (CA) Cryptography 1. Certificate Authority – Verisign A. Asymmetric Encryption E. Registration Authority (RA) B. Basic Number Facts F. Public Key Infrastructure (PKI) 1. Prime Numbers G. Digital Certificate Terminology 2. Co-Prime Numbers H. Server-based Certificate Validation 3. Euler’s Totient Protocol 4. Modulus Operator I. Digital Certificate Management 5. Fibonacci Numbers J. Trust Models C. Birthday Theorem K. Certificates and Web Servers 1. Birthday Paradox L. Microsoft Certificate Services Course Outline Course 2. Birthday Paradox: Probability M. Windows Certificates: certmgr.msc 3. Birthday Attack N. Authentication D. Random Number Generator 1. Password Authentication 1. Classification of Random Protocol (PAP) Number Generator 2. Shiva Password Authentication 2. Traits of a Good PRNG Protocol (S-PAP) 3. Naor-Reingold and Mersenne 3. Challenge-Handshake Twister Pseudorandom Function Authentication Protocol (CHAP) 4. Linear Congruential Generator 4. Kerberos 5. Lehmer Random Number 5. Components of Kerberos Generator System 6. Lagged Fibonacci Generator 6. Kerberos Authentication (LFG) Process 7. Blum Blum Shub O. Pretty Good Privacy (PGP) 8. Yarrow 1. PGP Certificates 9. Fortuna P. Wi-Fi Encryption E. Diffie-Hellman 1. Wired Equivalent Privacy (WEP) F. Rivest Shamir Adleman (RSA) 2. WPA – Wi-Fi Protected Access 1. RSA – How it Works 3. WPA2 2. RSA Example Q. SSL G. Menezes–Qu–Vanstone R. TLS H. Digital Signature Algorithm S. Virtual Private Network (VPN) 1. Signing with DSA 1. Point-to-Point Tunneling I. Elliptic Curve Protocol (PPTP) 1. Elliptic Curve Variations 2. PPTP VPN J. Elgamal 3. Layer 2 Tunneling Protocol VPN K. CrypTool 4. Internet Protocol Security VPN 5. SSL/TLS VPN IV. Applications of Cryptography T. Encrypting Files A. FIPS Standards 1. Backing up the EFS key B. Digital Signatures 2. Restoring the EFS Key C. What is a Digital Certificate? U. BitLocker 1. Digital Certificates 1. BitLocker: Screenshot 2. X.509 V. Disk Encryption Software: 3. X.509 Certificates VeraCrypt 4. X.509 Certificate Content W. Common Cryptography Mistakes 5. X.509 Certificate File 1. Steganography Extensions 2. Steganography Terms Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically. ProTech Professional Technical Services, Inc. EC -Council Certified Encryption Specialist (ECES) Course Outline (cont.) 3. Historical Steganography 4. Steganography Details 5. Other Forms of Steganography 6. How to Embed? 7. Steganographic File Systems 8. Steganography Implementations 9. Demonstration X. Steganalysis 1. Steganalysis – Raw Quick Pair 2. Steganalysis – Chi-Square Analysis Course Outline Course 3. Steganalysis – Audio Steganalysis Y. Steganography Detection Tools Z. National Security Agency and Cryptography 1. NSA Suite A Encryption Algorithms 2. NSA Suite B Encryption Algorithms 3. National Security Agency: Type 1 Algorithms 4. National Security Agency: Type 2 Algorithms 5. National Security Agency: Type 3 Algorithms 6. National Security Agency: Type 4 Algorithms AA. Unbreakable Encryption V. Cryptanalysis A. Breaking Ciphers B. Cryptanalysis C. Frequency Analysis D. Kasiski 1. Cracking Modern Cryptography 2. Cracking Modern Cryptography: Chosen Plaintext Attack 3. Cracking Modern Cryptography: Ciphertext-only and Related-key Attack E. Linear Cryptanalysis F. Differential Cryptanalysis G. Integral Cryptanalysis H. Cryptanalysis Resources I. Cryptanalysis Success J. Rainbow Tables K. Password Cracking L. Tools Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically. .
Recommended publications
  • Joint Force Quarterly 97
    Issue 97, 2nd Quarter 2020 JOINT FORCE QUARTERLY Broadening Traditional Domains Commercial Satellites and National Security Ulysses S. Grant and the U.S. Navy ISSUE NINETY-SEVEN, 2 ISSUE NINETY-SEVEN, ND QUARTER 2020 Joint Force Quarterly Founded in 1993 • Vol. 97, 2nd Quarter 2020 https://ndupress.ndu.edu GEN Mark A. Milley, USA, Publisher VADM Frederick J. Roegge, USN, President, NDU Editor in Chief Col William T. Eliason, USAF (Ret.), Ph.D. Executive Editor Jeffrey D. Smotherman, Ph.D. Production Editor John J. Church, D.M.A. Internet Publications Editor Joanna E. Seich Copyeditor Andrea L. Connell Associate Editor Jack Godwin, Ph.D. Book Review Editor Brett Swaney Art Director Marco Marchegiani, U.S. Government Publishing Office Advisory Committee Ambassador Erica Barks-Ruggles/College of International Security Affairs; RDML Shoshana S. Chatfield, USN/U.S. Naval War College; Col Thomas J. Gordon, USMC/Marine Corps Command and Staff College; MG Lewis G. Irwin, USAR/Joint Forces Staff College; MG John S. Kem, USA/U.S. Army War College; Cassandra C. Lewis, Ph.D./College of Information and Cyberspace; LTG Michael D. Lundy, USA/U.S. Army Command and General Staff College; LtGen Daniel J. O’Donohue, USMC/The Joint Staff; Brig Gen Evan L. Pettus, USAF/Air Command and Staff College; RDML Cedric E. Pringle, USN/National War College; Brig Gen Kyle W. Robinson, USAF/Dwight D. Eisenhower School for National Security and Resource Strategy; Brig Gen Jeremy T. Sloane, USAF/Air War College; Col Blair J. Sokol, USMC/Marine Corps War College; Lt Gen Glen D. VanHerck, USAF/The Joint Staff Editorial Board Richard K.
    [Show full text]
  • Implementation and Didactical Visualization of the Chacha Cipher Family in Cryptool 2
    Implementation and Didactical Visualization of the ChaCha Cipher Family in CrypTool 2 Bachelor’s Thesis Ramdip Gill Supervisor Priv.-Doz. Dr. Wolfgang Merkle Second Supervisor Prof. Dr. Frederik Armknecht Heidelberg, December 11, 2020 Faculty of Mathematics and Computer Science Heidelberg University ABSTRACT This thesis is about the implementation of the ChaCha plug-in in CrypTool 2. The thesis introduces the ChaCha cipher family, explains what the plug-in is capa- ble of, and gives insight into the development process of the plug-in. ChaCha is used in the Transport Layer Security protocol (TLS) since 2014 and so very relevant for applied modern cryptography. Because of the importance of ChaCha its internal design should be made more accessible to the broader public. This is the actual goal of the plug-in. The goal is achieved by focusing on an in-depth but easy to understand visualiza- tion of the encryption process. CrypTool 2 is the most popular e-learning platform in the field of cryptology, used in schools, universities, and companies. Incorporat- ing this plug-in into CrypTool 2 helps to reach a broad audience. iii ZUSAMMENFASSUNG Diese Bachelorarbeit befasst sich mit der Implementierung des ChaCha Plugins für CrypTool 2. Die Arbeit stellt die Familie der ChaCha-Chiffren vor; erklärt, wozu das Plugin in der Lage ist; und gibt Einblick in den Entwicklungsprozess des Plugins. ChaCha wird seit 2014 im Transport Layer Security-Protokoll (TLS) verwendet und ist daher für die angewandte moderne Kryptographie sehr relevant. Aufgrund der Bedeutung von ChaCha sollte sein internes Design der breiten Öffentlichkeit zu- gänglicher gemacht werden.
    [Show full text]
  • Simple Substitution and Caesar Ciphers
    Spring 2015 Chris Christensen MAT/CSC 483 Simple Substitution Ciphers The art of writing secret messages – intelligible to those who are in possession of the key and unintelligible to all others – has been studied for centuries. The usefulness of such messages, especially in time of war, is obvious; on the other hand, their solution may be a matter of great importance to those from whom the key is concealed. But the romance connected with the subject, the not uncommon desire to discover a secret, and the implied challenge to the ingenuity of all from who it is hidden have attracted to the subject the attention of many to whom its utility is a matter of indifference. Abraham Sinkov In Mathematical Recreations & Essays By W.W. Rouse Ball and H.S.M. Coxeter, c. 1938 We begin our study of cryptology from the romantic point of view – the point of view of someone who has the “not uncommon desire to discover a secret” and someone who takes up the “implied challenged to the ingenuity” that is tossed down by secret writing. We begin with one of the most common classical ciphers: simple substitution. A simple substitution cipher is a method of concealment that replaces each letter of a plaintext message with another letter. Here is the key to a simple substitution cipher: Plaintext letters: abcdefghijklmnopqrstuvwxyz Ciphertext letters: EKMFLGDQVZNTOWYHXUSPAIBRCJ The key gives the correspondence between a plaintext letter and its replacement ciphertext letter. (It is traditional to use small letters for plaintext and capital letters, or small capital letters, for ciphertext. We will not use small capital letters for ciphertext so that plaintext and ciphertext letters will line up vertically.) Using this key, every plaintext letter a would be replaced by ciphertext E, every plaintext letter e by L, etc.
    [Show full text]
  • Cryptography in Modern World
    Cryptography in Modern World Julius O. Olwenyi, Aby Tino Thomas, Ayad Barsoum* St. Mary’s University, San Antonio, TX (USA) Emails: [email protected], [email protected], [email protected] Abstract — Cryptography and Encryption have been where a letter in plaintext is simply shifted 3 places down used for secure communication. In the modern world, the alphabet [4,5]. cryptography is a very important tool for protecting information in computer systems. With the invention ABCDEFGHIJKLMNOPQRSTUVWXYZ of the World Wide Web or Internet, computer systems are highly interconnected and accessible from DEFGHIJKLMNOPQRSTUVWXYZABC any part of the world. As more systems get interconnected, more threat actors try to gain access The ciphertext of the plaintext “CRYPTOGRAPHY” will to critical information stored on the network. It is the be “FUBSWRJUASLB” in a Caesar cipher. responsibility of data owners or organizations to keep More recent derivative of Caesar cipher is Rot13 this data securely and encryption is the main tool used which shifts 13 places down the alphabet instead of 3. to secure information. In this paper, we will focus on Rot13 was not all about data protection but it was used on different techniques and its modern application of online forums where members could share inappropriate cryptography. language or nasty jokes without necessarily being Keywords: Cryptography, Encryption, Decryption, Data offensive as it will take those interested in those “jokes’ security, Hybrid Encryption to shift characters 13 spaces to read the message and if not interested you do not need to go through the hassle of converting the cipher. I. INTRODUCTION In the 16th century, the French cryptographer Back in the days, cryptography was not all about Blaise de Vigenere [4,5], developed the first hiding messages or secret communication, but in ancient polyalphabetic substitution basically based on Caesar Egypt, where it began; it was carved into the walls of cipher, but more difficult to crack the cipher text.
    [Show full text]
  • Fish-Stream Identification Guidebook
    of BRITISH COLUMBIA Fish-stream Identification Guidebook Second edition Version 2.1 August 1998 BC Environment Fish-stream Identification Guidebook of BRITISH COLUMBIA Fish-stream Identification Guidebook Second edition Version 2.1 August 1998 Authority Forest Practices Code of British Columbia Act Operational Planning Regulation Canadian Cataloguing in Publication Data Main entry under title: Fish-stream identification guidebook. – 2nd ed. (Forest practices code of British Columbia) ISBN 0-7726-3664-8 1. Fishes – Habitat – British Columbia. 2. River surveys – British Columbia. 3. Forest management – British Columbia. 4. Riparian forests – British Columbia – Management. I. British Columbia. Ministry of Forests. SH177.L63F58 1998 634.9 C98-960250-8 Fish-stream Identification Guidebook Preface This guidebook has been prepared to help forest resource managers plan, prescribe and implement sound forest practices that comply with the Forest Practices Code. Guidebooks are one of the four components of the Forest Practices Code. The others are the Forest Practices Code of British Columbia Act, the regulations, and the standards. The Forest Practices Code of British Columbia Act is the legislative umbrella authorizing the Code’s other components. It enables the Code, establishes mandatory requirements for planning and forest practices, sets enforcement and penalty provisions, and specifies administrative arrangements. The regulations lay out the forest practices that apply province-wide. The chief forester may establish standards, where required, to expand on a regulation. Both regulations and standards are mandatory requirements under the Code. Forest Practices Code guidebooks have been developed to support the regulations, however, only those portions of guidebooks cited in regulation are part of the legislation.
    [Show full text]
  • Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives
    Self-encrypting deception: weaknesses in the encryption of solid state drives Carlo Meijer Bernard van Gastel Institute for Computing and Information Sciences School of Computer Science Radboud University Nijmegen Open University of the Netherlands [email protected] and Institute for Computing and Information Sciences Radboud University Nijmegen Bernard.vanGastel@{ou.nl,ru.nl} Abstract—We have analyzed the hardware full-disk encryption full-disk encryption. Full-disk encryption software, especially of several solid state drives (SSDs) by reverse engineering their those integrated in modern operating systems, may decide to firmware. These drives were produced by three manufacturers rely solely on hardware encryption in case it detects support between 2014 and 2018, and are both internal models using the SATA and NVMe interfaces (in a M.2 or 2.5" traditional form by the storage device. In case the decision is made to rely on factor) and external models using the USB interface. hardware encryption, typically software encryption is disabled. In theory, the security guarantees offered by hardware encryp- As a primary example, BitLocker, the full-disk encryption tion are similar to or better than software implementations. In software built into Microsoft Windows, switches off software reality, we found that many models using hardware encryption encryption and completely relies on hardware encryption by have critical security weaknesses due to specification, design, and implementation issues. For many models, these security default if the drive advertises support. weaknesses allow for complete recovery of the data without Contribution. This paper evaluates both internal and external knowledge of any secret (such as the password).
    [Show full text]
  • Computer and Information Security Pointer​ to Homework 2
    Computer and Information Security (ECE560, Fall 2020, Duke Univ., Prof. Tyler Bletsch) Pointer to Homework 2 Updated 2020-09-07:​ Clarified SSH key format Question 0: Accessing the Homework (0 points, but necessary) Homework 2 is encrypted with three stages of encryption. You’ll need to use both your Windows VM and a new Kali Linux VM. The stages are: 1. The inner layer is a VeraCrypt encrypted disk image to be opened in Windows that ​ ​ contains a link to Homework 2; I explain how to find the key for this later in this document. You get to the inner layer by decrypting the outer layer. 2. The outer layer is encrypted with AES and is available for each student on the course ​ ​ site; the secret key is randomly generated per each student and is distributed by the Encrypted Thing Giver web app. ​ 3. The Encrypted Thing Giver accepts an RSA public key, encrypts the random secret ​ ​ key using this public key. As owner of the corresponding private key, you’ll be able to decrypt it in order to obtain the AES key for the outer layer. The steps below will walk you through this crypto journey. You will need to show your work later, so keep notes! Make an SSH key pair You will need an SSH key pair. If you already created one, you can use it as-is (provided it is RSA-based, but most are). If you don’t have an SSH key pair, research how to create one with ssh-keygen. You may wish to do this on your local system, as you can set it up to let you SSH into Duke machines without a password (optional -- see Appendix A at the end of this document).
    [Show full text]
  • Cryptology with Jcryptool V1.0
    www.cryptool.org Cryptology with JCrypTool (JCT) A Practical Introduction to Cryptography and Cryptanalysis Prof Bernhard Esslinger and the CrypTool team Nov 24th, 2020 JCrypTool 1.0 Cryptology with JCrypTool Agenda Introduction to the e-learning software JCrypTool 2 Applications within JCT – a selection 22 How to participate 87 JCrypTool 1.0 Page 2 / 92 Introduction to the software JCrypTool (JCT) Overview JCrypTool – A cryptographic e-learning platform Page 4 What is cryptology? Page 5 The Default Perspective of JCT Page 6 Typical usage of JCT in the Default Perspective Page 7 The Algorithm Perspective of JCT Page 9 The Crypto Explorer Page 10 Algorithms in the Crypto Explorer view Page 11 The Analysis tools Page 13 Visuals & Games Page 14 General operation instructions Page 15 User settings Page 20 Command line parameters Page 21 JCrypTool 1.0 Page 3 / 92 JCrypTool – A cryptographic e-learning platform The project Overview . JCrypTool – abbreviated as JCT – is a free e-learning software for classical and modern cryptology. JCT is platform independent, i.e. it is executable on Windows, MacOS and Linux. It has a modern pure-plugin architecture. JCT is developed within the open-source project CrypTool (www.cryptool.org). The CrypTool project aims to explain and visualize cryptography and cryptanalysis in an easy and understandable way while still being correct from a scientific point of view. The target audience of JCT are mainly: ‐ Pupils and students ‐ Teachers and lecturers/professors ‐ Employees in awareness campaigns ‐ People interested in cryptology. As JCT is open-source software, everyone is capable of implementing his own plugins.
    [Show full text]
  • Visualization of the Avalanche Effect in CT2
    University of Mannheim Faculty for Business Informatics & Business Mathematics Theoretical Computer Science and IT Security Group Bachelor's Thesis Visualization of the Avalanche Effect in CT2 as part of the degree program Bachelor of Science Wirtschaftsinformatik submitted by Camilo Echeverri [email protected] on October 31, 2016 (2nd revised public version, Apr 18, 2017) Supervisors: Prof. Dr. Frederik Armknecht Prof. Bernhard Esslinger Visualization of the Avalanche Effect in CT2 Abstract Cryptographic algorithms must fulfill certain properties concerning their security. This thesis aims at providing insights into the importance of the avalanche effect property by introducing a new plugin for the cryptography and cryptanalysis platform CrypTool 2. The thesis addresses some of the desired properties, discusses the implementation of the plugin for modern and classic ciphers, guides the reader on how to use it, applies the proposed tool in order to test the avalanche effect of different cryptographic ciphers and hash functions, and interprets the results obtained. 2 Contents Abstract .......................................... 2 Contents .......................................... 3 List of Abbreviations .................................. 5 List of Figures ...................................... 6 List of Tables ....................................... 7 1 Introduction ..................................... 8 1.1 CrypTool 2 . 8 1.2 Outline of the Thesis . 9 2 Properties of Secure Block Ciphers ....................... 10 2.1 Avalanche Effect . 10 2.2 Completeness . 10 3 Related Work ..................................... 11 4 Plugin Design and Implementation ....................... 12 4.1 General Description of the Plugin . 12 4.2 Prepared Methods . 14 4.2.1 AES and DES . 14 4.3 Unprepared Methods . 20 4.3.1 Classic Ciphers, Modern Ciphers, and Hash Functions . 20 4.4 Architecture of the Code . 22 4.5 Limitations and Future Work .
    [Show full text]
  • A Cipher Based on the Random Sequence of Digits in Irrational Numbers
    https://doi.org/10.48009/1_iis_2016_14-25 Issues in Information Systems Volume 17, Issue I, pp. 14-25, 2016 A CIPHER BASED ON THE RANDOM SEQUENCE OF DIGITS IN IRRATIONAL NUMBERS J. L. González-Santander, [email protected], Universidad Católica de Valencia “san Vicente mártir” G. Martín González. [email protected], Universidad Católica de Valencia “san Vicente mártir” ABSTRACT An encryption method combining a transposition cipher with one-time pad cipher is proposed. The transposition cipher prevents the malleability of the messages and the randomness of one-time pad cipher is based on the normality of "almost" all irrational numbers. Further, authentication and perfect forward secrecy are implemented. This method is quite suitable for communication within groups of people who know one each other in advance, such as mobile chat groups. Keywords: One-time Pad Cipher, Transposition Ciphers, Chat Mobile Groups Privacy, Forward Secrecy INTRODUCTION In cryptography, a cipher is a procedure for encoding and decoding a message in such a way that only authorized parties can write and read information about the message. Generally speaking, there are two main different cipher methods, transposition, and substitution ciphers, both methods being known from Antiquity. For instance, Caesar cipher consists in substitute each letter of the plaintext some fixed number of positions further down the alphabet. The name of this cipher came from Julius Caesar because he used this method taking a shift of three to communicate to his generals (Suetonius, c. 69-122 AD). In ancient Sparta, the transposition cipher entailed the use of a simple device, the scytale (skytálē) to encrypt and decrypt messages (Plutarch, c.
    [Show full text]
  • CEH: Certified Ethical Hacker Course Content
    CEH: Certified Ethical Hacker Course ID #: 1275-100-ZZ-W Hours: 35 Course Content Course Description: The Certified Ethical Hacker (CEH) program is the core of the most desired information security training system any information security professional will ever want to be in. The CEH, is the first part of a 3 part EC-Council Information Security Track which helps you master hacking technologies. You will become a hacker, but an ethical one! As the security mindset in any organization must not be limited to the silos of a certain vendor, technologies or pieces of equipment. This course was designed to provide you with the tools and techniques used by hackers and information security professionals alike to break into an organization. As we put it, “To beat a hacker, you need to think like a hacker”. This course will immerse you into the Hacker Mindset so that you will be able to defend against future attacks. It puts you in the driver’s seat of a hands-on environment with a systematic ethical hacking process. Here, you will be exposed to an entirely different way of achieving optimal information security posture in their organization; by hacking it! You will scan, test, hack and secure your own systems. You will be thought the Five Phases of Ethical Hacking and thought how you can approach your target and succeed at breaking in every time! The ve phases include Reconnaissance, Gaining Access, Enumeration, Maintaining Access, and covering your tracks. The tools and techniques in each of these five phases are provided in detail in an encyclopedic approach to help you identify when an attack has been used against your own targets.
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]