Nitric Oxide Signalling in Kidney Regulation and Cardiometabolic Health

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide Signalling in Kidney Regulation and Cardiometabolic Health REVIEWS Nitric oxide signalling in kidney regulation and cardiometabolic health Mattias Carlström Abstract | The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic l-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate–nitrite–NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders. The prevalence of cardiovascular disorders, including a substantial contribution of increased generation of hypertension, and metabolic disorders such as type 2 NADPH oxidase­derived and mitochondria­derived diabetes mellitus (T2DM), is increasing worldwide. reactive oxygen species (ROS) and oxidative stress cou­ These disorders are closely coupled with the develop­ pled with reduced nitric oxide (NO) bioactivity and ment and progression of kidney disease, which signifi­ endothelial dysfunction7–10. NO is a short­lived diatomic cantly increases patient morbidity and mortality1,2. The signalling molecule that exerts multiple effects on kidney, resulting societal economic burden is immense and fur­ cardiovascular and metabolic functions, including mod­ ther understanding of the underlying pathophysiological ulation of renal autoregulation, tubular fluid and electro­ mechanisms is urgently needed to enable the develop­ lyte transport, vascular tone, blood pressure, platelet ment of novel preventive and therapeutic nutritional and aggregation, immune cell activation, insulin­glucose pharmacological strategies2. The kidney, cardio vascular homeostasis and mitochondrial function. The classical and metabolic phenotypes (that is, kidney disease, cardio­ view is that nitric oxide synthase (NOS) systems are the vascular disease and T2DM) are interrelated, suggesting main source of endogenous NO formation. However, an that this triad of disorders share common underlying alternative pathway exists whereby the supposedly inert pathological mechanisms. The exact causes of these dis­ oxidation products of NO, that is, inorganic nitrate and orders, the interactions between organ systems and the nitrite, undergo serial reductions to form NO and other complex pathophysiological mechanism(s) that underlie closely related bioactive nitrogen oxide species11–13. the initiation, maintenance and progression of disease are The important role of NO in the regulation of kid­ complex and not fully understood. ney, cardiovascular and metabolic functions in health Department of Physiology Potential mechanisms that might contribute to the and disease has led to substantial interest in the iden­ and Pharmacology, development of kidney disease, cardiovascular dis­ tification of methods to therapeutically modulate NO Karolinska Institutet, Stockholm, Sweden. ease and T2DM include hyperglycaemia, altered lipid bioactivity. In this Review, I discuss the physiological e-mail: mattias.carlstrom metabolism, low­grade inflammation, overactivity of roles of NO, the direct and indirect effects by which this @ki.se the renin–angiotensin–aldosterone system (RAAS), molecule influences kidney function and its association https://doi.org/10.1038/ increased sympathetic nerve activity and altered micro­ with cardiometabolic complications. I also highlight s41581-021-00429-z biota3–6. In addition, several studies have suggested novel approaches to restoring NO homeostasis during NATURE REVIEWS | NEPHROLOGY VOLUME 17 | SEPTEMBER 2021 | 575 0123456789();: REVIEWS Key points via protein–protein interactions and regulation of sub­ cellular localization, which can increase or decrease • Nitric oxide and other bioactive nitrogen species have pivotal roles in multiple their enzymatic activity31–33. Acute changes in nNOS physiological functions, including modulation of the kidney, cardiovascular and and eNOS activity in the vasculature and the kidney metabolic systems; in the kidney, nitric oxide has a crucial role in autoregulation are mainly modulated via post­translational mecha­ and modulation of tubular transport. • Nitric oxide is classically derived from l-arginine-dependent nitric oxide synthases, nisms, whereas chronic changes in NO synthesis are but can also be formed via serial reduction of inorganic nitrate and nitrite, that is, regulated by altered eNOS or nNOS transcription and 18,34,35 the nitrate–nitrite–nitric oxide pathway. translation . Activation of iNOS is associated with • The nitrate–nitrite–nitric oxide pathway can be boosted via the diet and is of inflammatory processes and leads to significantly higher particular importance in conditions where the activity of the nitric oxide synthase levels of NO than those that are produced by constitutive system is reduced, such as hypoxia, ischaemia or low pH. activation of other NOS isoforms. The resulting acute • Signalling via bioactive nitrogen species is linked with both cGMP-dependent and increases in NO have beneficial antimicrobial effects independent mechanisms. against bacteria, viruses and fungi. However, induc­ • Reduced nitric oxide bioactivity has been associated with ageing and kidney, tion of iNOS is also associated with chronic low­grade cardiovascular and metabolic disorders, which are often coupled with oxidative stress. inflammation in cardiovascular, metabolic and kidney 36 • Novel pharmacological and nutritional strategies that increase nitric oxide bioactivity disorders . and reduce oxidative stress could be potential therapies for preventing and treating The constitutive NOS systems are generally thought kidney disease and associated cardiometabolic complications. to be the main source of endogenous NO production and signalling under normal, healthy conditions, but are often dysfunctional in pathological conditions includ­ NOS deficiency with a focus on the alternative nitrate– ing cardiovascular disorders9 and chronic kidney disease nitrite–NO pathway, which can be boosted via dietary (CKD)37,38. This dysfunction is associated with reduced intake, particularly by eating green leafy vegetables. NO bioactivity. The mechanisms that contribute to reduced NO formation and compromised signalling are The classical NO synthase systems multifactorial and include reduced NOS expression, lim­ NO is endogenously generated by numerous cells ited substrate availability, uncoupling of NOS, elevated throughout the body via three different NOS systems levels of endogenous NOS inhibitors such as asymmetric (Fig. 1)14–16. Neuronal NOS (nNOS; also known as NOS1) dimethylarginine and compromised signalling in states and endothelial NOS (eNOS; also known as NOS3) of oxidative stress due to direct scavenging by ROS or are constitutively expressed, whereas inducible NOS oxidation of the heme group in sGC (Fe2+ to Fe3+), which (iNOS; also known as NOS2) is mainly associated with renders it insensitive to activation by NO9,39. inflammatory conditions16,17. l­Arginine, molecular oxygen, NADPH and tetrahydrobiopterin (BH4) are Kidney expression of NOS isoforms equally important substrates or co­factors that lead Expression of all three NOS isoforms and sGC has been to equimolar generation of NO and l­citrulline18,19. reported in the kidney, although some discrepancies In the endothelium, eNOS­derived NO has a central exist regarding the expression levels along the nephron role in the regulation of blood flow and maintenance when comparing data from human and animal studies. of endothelial integrity. The activity of eNOS and Moreover, splice variants of nNOS and iNOS40,41 can nNOS is regulated by intracellular calcium, which influence their activity and function. In the macula activates calmodulin. In turn, calmodulin binds and densa, splice variants (α, β and γ isoforms) have been increases NOS enzyme activity. This process results in reported to have a substantial impact on the func­ NO­mediated activation of soluble guanylate cyclase tion of nNOS42, thus modulating renin secretion and (sGC) and increased formation of cyclic GMP (cGMP), autoregulatory mechanisms. which activates cGMP­dependent protein kinases. Expression of nNOS in the macula densa and eNOS This NO–sGC–cGMP signalling pathway mediates in the kidney vasculature has been consistently doc­ many of the effects of NO bioactivity on cardiovascu­ umented; some but not all studies have also reported lar, kidney and metabolic functions20. However, other eNOS expression in tubular epithelial cells. In normal, bioactive
Recommended publications
  • Preparation and Purification of Atmospherically Relevant Α
    Atmos. Chem. Phys., 20, 4241–4254, 2020 https://doi.org/10.5194/acp-20-4241-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Technical note: Preparation and purification of atmospherically relevant α-hydroxynitrate esters of monoterpenes Elena Ali McKnight, Nicole P. Kretekos, Demi Owusu, and Rebecca Lyn LaLonde Chemistry Department, Reed College, Portland, OR 97202, USA Correspondence: Rebecca Lyn LaLonde ([email protected]) Received: 31 July 2019 – Discussion started: 6 August 2019 Revised: 8 December 2019 – Accepted: 20 January 2020 – Published: 9 April 2020 Abstract. Organic nitrate esters are key products of terpene oxidation in the atmosphere. We report here the preparation and purification of nine nitrate esters derived from (C)-3- carene, limonene, α-pinene, β-pinene and perillic alcohol. The availability of these compounds will enable detailed investigations into the structure–reactivity relationships of aerosol formation and processing and will allow individual investigations into aqueous-phase reactions of organic nitrate esters. Figure 1. Two hydroxynitrate esters with available spectral data. Relative stereochemistry is undefined. 1 Introduction derived ON is difficult, particularly due to partitioning into the aerosol phase in which hydrolysis and other reactivity Biogenic volatile organic compound (BVOC) emissions ac- can occur (Bleier and Elrod, 2013; Rindelaub et al., 2014, count for ∼ 88 % of non-methane VOC emissions. Of the to- 2015; Romonosky et al., 2015; Thomas et al., 2016). Hydrol- tal BVOC estimated by the Model of Emission of Gases and ysis reactions of nitrate esters of isoprene have been stud- Aerosols from Nature version 2.1 (MEGAN2.1), isoprene is ied directly (Jacobs et al., 2014) and the hydrolysis of ON estimated to comprise half, and methanol, ethanol, acetalde- has been studied in bulk (Baker and Easty, 1950).
    [Show full text]
  • Thermal Decomposition of Nitrate Esters1 Michael A. Hiskey, Kay R. Brower, and Jimmie C. Oxley* Department of Chemistry New Mexi
    Thermal Decomposition of Nitrate Esters1 Michael A. Hiskey, Kay R. Brower, and Jimmie C. Oxley* Department of Chemistry New Mexico Institute of Mining and Technology Socorro, New Mexico 87801 Abstract Rates of thermal decomposition and solvent rate effects have been measured for a series of nitrate esters. The alkoxy radicals formed by homolysis together with some of their further degradation products have been stabilized by hydrogen donation. Internal and external return of nitrogen dioxide has been demonstrated by solvent cage effects and isotope exchange. Radical- stabilizing substituents favor β-scission. Dinitrates in a 1,5 relationship behave as isolated mononitrates. Dinitrates in a 1,3 or 1,4 relationship exhibit intramolecular reactions. Tertiary nitrate esters in diethyl ether undergo elimination rather than homolysis. Introduction The esters of nitric acid have long been used as explosives and propellants, and their thermal decomposition products and kinetics have been studied as a means to evaluate the thermal hazards of these compounds. The thermal decomposition of ethanolnitrate was examined by a number of researchers, and it was proposed that the first, and rate-determining, step was the 2-5 reversible loss of NO2: . RCH2O-NO2 <--> RCH2O + NO2 Griffiths, Gilligan, and Gray6 investigated 2-propanol nitrate pyrolysis and found it exhibited more β-cleavage than primary nitrate esters. It yielded nearly equal amounts of 2- propanol nitrite and acetaldehyde, as well as small amounts of acetone, nitromethane, and methyl nitrite (Fig. 1). Homolytic cleavage of the RO-NO2 bond would form the 2-propoxy radical, which could subsequently react with nitric oxide to produce 2-propanol nitrite.
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20
    Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L
    [Show full text]
  • Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon
    Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon To cite this version: Quentin Verdon. Towards the Elucidation of Orphan Lysosomal Transporters. Cancer. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS144. tel-01827233 HAL Id: tel-01827233 https://tel.archives-ouvertes.fr/tel-01827233 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS144 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A L’UNIVERSITE PARIS-SUD ECOLE DOCTORALE N°568 BIOSIGNE | Signalisations et réseaux intégratifs en biologie Spécialité de doctorat : aspects moléculaires et cellulaires de la biologie Par Mr Quentin Verdon Towards the elucidation of orphan lysosomal transporters: several shots on target and one goal Thèse présentée et soutenue à Paris le 29/06/2016 » : Composition du Jury : Mr Le Maire Marc Professeur, Université Paris-Sud Président Mr Birman Serge Directeur de recherche, CNRS Rapporteur Mr Murray James Assistant professor, Trinity college Dublin Rapporteur Mr Goud Bruno Directeur de recherche, CNRS Examinateur Mr Gasnier Bruno Directeur de recherche, CNRS Directeur de thèse Mme Sagné Corinne Chargée de recherche, INSERM Co-directeur de thèse Table of contents Remerciements (acknowledgements) 6 Abbreviations 7 Abstracts 10 Introduction 12 1 Physiology of lysosomes 12 1.1 Discovery and generalities 12 1.2 Degradative function 13 1.3.
    [Show full text]
  • Toxicological Profile for Nitrate and Nitrite
    NITRATE AND NITRITE 29 3. HEALTH EFFECTS 3.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of nitrate and nitrite. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological, reproductive, developmental, and carcinogenic effects). These data are discussed in terms of three exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest- observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear.
    [Show full text]
  • Sialic Acid Storage Disease
    Sialic acid storage disease Description Sialic acid storage disease is an inherited disorder that primarily affects the nervous system. People with sialic acid storage disease have signs and symptoms that may vary widely in severity. This disorder is generally classified into one of three forms: infantile free sialic acid storage disease, Salla disease, and intermediate severe Salla disease. Infantile free sialic acid storage disease (ISSD) is the most severe form of this disorder. Babies with this condition have severe developmental delay, weak muscle tone ( hypotonia), and failure to gain weight and grow at the expected rate (failure to thrive). They may have unusual facial features that are often described as "coarse," seizures, bone malformations, an enlarged liver and spleen (hepatosplenomegaly), and an enlarged heart (cardiomegaly). The abdomen may be swollen due to the enlarged organs and an abnormal buildup of fluid in the abdominal cavity (ascites). Affected infants may have a condition called hydrops fetalis in which excess fluid accumulates in the body before birth. Children with this severe form of the condition usually live only into early childhood. Salla disease is a less severe form of sialic acid storage disease. Babies with Salla disease usually begin exhibiting hypotonia during the first year of life and go on to experience progressive neurological problems. Signs and symptoms of Salla disease include intellectual disability and developmental delay, seizures, problems with movement and balance (ataxia), abnormal tensing of the muscles (spasticity), and involuntary slow, sinuous movements of the limbs (athetosis). Individuals with Salla disease usually survive into adulthood. People with intermediate severe Salla disease have signs and symptoms that fall between those of ISSD and Salla disease in severity.
    [Show full text]
  • Sialin (SLC17A5) Functions As a Nitrate Transporter in the Plasma Membrane
    Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane Lizheng Qina,1, Xibao Liub,1, Qifei Suna, Zhipeng Fana, Dengsheng Xiaa, Gang Dinga, Hwei Ling Ongb, David Adamsc, William A. Gahlc, Changyu Zhengb, Senrong Qia, Luyuan Jina, Chunmei Zhanga, Liankun Gud, Junqi Hee, Dajun Dengd,2, Indu S. Ambudkarb,2, and Songlin Wanga,e,2 aSalivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China; bMolecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892; cMedical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892; dKey Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China; and eDepartment of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing 100069, China Edited by Mark Gladwin, University of Pittsburg Medical Center, Pittsburgh, PA and accepted by the Editorial Board June 5, 2012 (received for review October 13, 2011) In vivo recycling of nitrate (NO −) and nitrite (NO −) is an important Nitrate uptake into salivary glands represents the key initial step 3 2 − alternative pathway for the generation of nitric oxide (NO) and in NO clearance from the serum; however, the mechanism me- 3 − maintenance of systemic nitrate–nitrite–NO balance. More than diating transport of NO3 in salivary gland epithelial cells has not − − fl 25% of the circulating NO3 is actively removed and secreted by yet been established. In this study, we examined NO3 in ux in − + salivary glands. Oral commensal bacteria convert salivary NO3 to salivary gland cells.
    [Show full text]
  • Potential Roles of Nitrate and Nitrite in Nitric Oxide Metabolism in the Eye Ji Won Park1, Barbora Piknova1, Audrey Jenkins2, David Hellinga2, Leonard M
    www.nature.com/scientificreports OPEN Potential roles of nitrate and nitrite in nitric oxide metabolism in the eye Ji Won Park1, Barbora Piknova1, Audrey Jenkins2, David Hellinga2, Leonard M. Parver3 & Alan N. Schechter1* Nitric oxide (NO) signaling has been studied in the eye, including in the pathophysiology of some eye diseases. While NO production by nitric oxide synthase (NOS) enzymes in the eye has been − characterized, the more recently described pathways of NO generation by nitrate ( NO3 ) and nitrite − (NO2 ) ions reduction has received much less attention. To elucidate the potential roles of these pathways, we analyzed nitrate and nitrite levels in components of the eye and lacrimal glands, primarily in porcine samples. Nitrate and nitrite levels were higher in cornea than in other eye parts, while lens contained the least amounts. Lacrimal glands exhibited much higher levels of both ions compared to other organs, such as liver and skeletal muscle, and even to salivary glands which are known to concentrate these ions. Western blotting showed expression of sialin, a known nitrate transporter, in the lacrimal glands and other eye components, and also xanthine oxidoreductase, a nitrate and nitrite reductase, in cornea and sclera. Cornea and sclera homogenates possessed a measurable amount of nitrate reduction activity. These results suggest that nitrate ions are concentrated in the lacrimal glands by sialin and can be secreted into eye components via tears and then reduced to nitrite and NO, thereby being an important source of NO in the eye. Te NO generation pathway from L-arginine by endogenous NOS enzymes under normoxic conditions has been central in identifying the physiological roles of NO in numerous biological processes1.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,807,847 Thatcher Et Al
    USOO5807847A United States Patent (19) 11 Patent Number: 5,807,847 Thatcher et al. (45) Date of Patent: Sep. 15, 1998 54 NITRATE ESTERS Bennett, B.M., McDonald, B.J., Nigam, R., and Simon, W.C., “Biotransformation of organic nitrates and vascular 75 Inventors: Gregory R. J. Thatcher; Brian M. Smooth muscle cell function', Trends in Pharmacol. Sci. 15: Bennett, both of Kingston, Canada 245–249 (1994). Cameron, D.R., Borrajo, A.M.P., Bennett, B.M., and 73 Assignee: Queen's University at Kingston, Thatcher, G.R.J., “Organic nitrates, thionitrates, peroxyni Kingston, Canada trites, and nitric oxide: a molecular orbital study of RXNO es RXONO (X=O.S) rearrangement, a reaction of potential 21 Appl. No.: 658,145 biological significance”, Can. J. Chem. 73: 1627-1638 22 Filed: Jun. 4, 1996 (1995). Chong, S., and Fung, H.-L., “Biochemical and pharmaco 51) Int. Cl. ...................... C07C 38/102; CO7C 203/04; logical interactions between nitroglycerin and thiols. Effects A61K 31/255; A61K 31/66; A61K 31/39; of thiol Structure on nitric oxide generation and tolerance A61K 31/21; CO7F 9/40; CO7D 327/04 reversal”, Biochem. Pharm. 42: 1433–1439 (1991). 52 U.S. Cl. .............................. 514/129; 514/23: 514/24; 514/439; 514/517; 514/509; 536/18.7; 536/55; Feelisch, M., “Biotransformation to nitric oxide of organic 549/40; 558/175; 558/480; 558/484; 558/485; nitrates in comparison to other nitrovasodilators”, Eur: Heart 560/309 J., 14: 123–132 (1993). 58 Field of Search ..................................... 514/129, 439, Fung, H-L., "Nitrate therapy: is there an optimal Substance 514/509, 517; 549/40; 558/175, 480, 484, and formulation'Eur: Heart J., 12:9-12 (1991).
    [Show full text]
  • NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE Criteria for a Recommended Standard OCCUPATIONAL EXPOSURE to NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE TO NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE criteria for a recommended standard OCCUPATIONAL EXPOSURE TO NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health June 1978 For »ale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company name or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-167 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) evaluates all available research data and criteria and recommends standards for occupational exposure. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in promulgating regulatory standards. NIOSH will periodically review the recommended standards to ensure continuing protection of workers and will make successive reports as new research and epidemiologic studies are completed and as sampling and analytical methods are developed. The contributions to this document on nitroglycerin (NG) and ethylene glycol dinitrate (EGDN) by NIOSH staff, other Federal agencies or departments, the review consultants, the reviewers selected by the American Industrial Hygiene Association, and by Robert B. O ’Connor, M.D., NIOSH consultant in occupational medicine, are gratefully acknowledged. The views and conclusions expressed in this document, together with the recommendations for a standard, are those of NIOSH.
    [Show full text]
  • Characterization of Centrally Expressed Solute Carriers
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215 Characterization of Centrally Expressed Solute Carriers Histological and Functional Studies with Transgenic Mice SAHAR ROSHANBIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9555-8 UPPSALA urn:nbn:se:uu:diva-282956 2016 Dissertation presented at Uppsala University to be publicly examined in B:21, Husargatan. 75124 Uppsala, Uppsala, Friday, 3 June 2016 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Biträdande professor David Engblom (Institutionen för klinisk och experimentell medicin, Cellbiologi, Linköpings Universitet). Abstract Roshanbin, S. 2016. Characterization of Centrally Expressed Solute Carriers. Histological and Functional Studies with Transgenic Mice. (. His). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9555-8. The Solute Carrier (SLC) superfamily is the largest group of membrane-bound transporters, currently with 456 transporters in 52 families. Much remains unknown about the tissue distribution and function of many of these transporters. The aim of this thesis was to characterize select SLCs with emphasis on tissue distribution, cellular localization, and function. In paper I, we studied the leucine transporter B0AT2 (Slc6a15). Localization of B0AT2 and Slc6a15 in mouse brain was determined using in situ hybridization (ISH) and immunohistochemistry (IHC), localizing it to neurons, epithelial cells, and astrocytes. Furthermore, we observed a lower reduction of food intake in Slc6a15 knockout mice (KO) upon intraperitoneal injections with leucine, suggesting B0AT2 is involved in mediating the anorexigenic effects of leucine.
    [Show full text]
  • Transporters
    Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences,
    [Show full text]