Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon

Total Page:16

File Type:pdf, Size:1020Kb

Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon To cite this version: Quentin Verdon. Towards the Elucidation of Orphan Lysosomal Transporters. Cancer. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS144. tel-01827233 HAL Id: tel-01827233 https://tel.archives-ouvertes.fr/tel-01827233 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS144 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A L’UNIVERSITE PARIS-SUD ECOLE DOCTORALE N°568 BIOSIGNE | Signalisations et réseaux intégratifs en biologie Spécialité de doctorat : aspects moléculaires et cellulaires de la biologie Par Mr Quentin Verdon Towards the elucidation of orphan lysosomal transporters: several shots on target and one goal Thèse présentée et soutenue à Paris le 29/06/2016 » : Composition du Jury : Mr Le Maire Marc Professeur, Université Paris-Sud Président Mr Birman Serge Directeur de recherche, CNRS Rapporteur Mr Murray James Assistant professor, Trinity college Dublin Rapporteur Mr Goud Bruno Directeur de recherche, CNRS Examinateur Mr Gasnier Bruno Directeur de recherche, CNRS Directeur de thèse Mme Sagné Corinne Chargée de recherche, INSERM Co-directeur de thèse Table of contents Remerciements (acknowledgements) 6 Abbreviations 7 Abstracts 10 Introduction 12 1 Physiology of lysosomes 12 1.1 Discovery and generalities 12 1.2 Degradative function 13 1.3. Integral membrane proteins of lysosomes 14 1.4. Biogenesis of lysosomes 17 1.4.1. Formation of the compartment 17 1.4.2. Sorting and activation of lysosomal enzymes 19 1.4.3. Sorting of lysosomal membrane proteins. 20 1.5. Entry of macromolecules into lysosomes 21 1.5.1 Autophagies 21 1.5.2. Endocytosis and phagocytosis 23 1.5.3. Transport through the lysosomal membrane 24 1.6. Lysosomes and signaling pathways 24 2. Dysfunction of lysosomes: the lysosomal storage disorders (LSDs) 27 2.1. Generalities on LSDs 27 2.1.1 Types of LSDs 27 2.1.2. Treatments 28 2.2. LSDs due to a defective lysosomal membrane protein 29 2.2.1. Defect in ion transport 29 2.2.2. Defect in cholesterol trafficking 30 2.2.3. Defect in an enzyme/transporter 31 2.2.4. Defect in LAMP2 31 2.2.5. Defect in transport of catabolites 31 Chapter 1: functional study of putative lysosomal transporters 34 1. Introduction 34 2. How to screen for new lysosomal transporters 54 1 2.1. Step 1: is the candidate lysosomal? 54 2.2. Step 2: is it possible to express the candidate at plasma membrane? 55 2.3. Step 3: functional assays 56 2.4 Summary of the screening method 59 3. Study of five proteins of the lysosomal membrane: TMEM104, SLC37A2, TTYH3, MFSD1 and SPINSTER1 59 3.1. TTYH3, a chloride channel 59 3.1.1. Introduction 59 3.1.2. Screening of the putative lysosomal sorting motif 60 3.2. TMEM104, a putative amino acid transporter 60 3.2.1. Introduction 60 3.2.2. Screening of the putative lysosomal sorting motif 61 3.3. SLC37A2, a putative glucose-6-phosphate transporter? 62 3.3.1. Introduction and sorting motif 62 a- Former results on SLC37A2 62 b- A natural variant of SLC37A2 is sorted to lysosomes 63 3.3.2. Functional assays 64 3.3.3 Phosphoglycerate lysosomal transporters: a gap in the catabolism of lipids 66 3.4. hSPINSTER1, a putative transceptor 67 3.4.1 Introduction 67 3.4.2 Screening of the putative lysosomal sorting motif 69 3.5. MFSD1, a protein belonging to the major facilitator superfamily 72 3.5.1 Introduction 72 3.5.2. Topology issue and screening of the putative lysosomal motif 72 3.5.3 Functional assays on MFSD1 73 4. Conclusion 75 Chapter 2: study of two lysosomal membrane proteins implicated in neurodegenerative disorders: CLN3 and CLN7 77 1. Introduction 77 1.1 On neuronal ceroid lipofuscinosis 77 1.1.1 Generalities 77 2 1.1.2 Pattern of neurodegeneration in brain 78 1.1.3 Genetic determinants of NCLs 78 1.1.4 Therapies 79 1.2 CLN3 81 1.3 CLN7 82 2. Functional characterization of CLN7 by TEVC 83 2.1 Expression of human CLN7 at plasma membrane in Xenopus oocytes 83 2.2 Functional study of CLN7 using TEVC 85 3. Lysosomal proteolysis is impacted by CLN3 malfunction 89 3.1 Metabolomics of Cln3 KI mice 89 3.2 Evaluation of proteolysis in neurons of CLN3 KI mice 94 3.3 Measure of long-lived protein degradation in CLN3 WT and KI primary fibroblasts 97 3.4 Rescue of lysosomal proteolysis by CLN3 overexpression 100 4. Conclusion 103 4.1 Other approaches to identify CLN7 substrate 103 4.1.1 Widening the electrophysiological screen 103 4.1.2 Checking for a non-electrogenic transport of amino acids 103 4.1.3 Enriching oocytes in CLN7 substrate 103 4.1.4 Metabolomic profiling of CLN7 KO mice 104 4.2 Relevance of the lack of lysosomal proteolysis in the context of CLN3 deficiency 104 4.2.1 Checking the selectivity of the proteolysis defect 105 4.2.2 A need for a better model to study CLN3 dysfunction 106 4.2.3 Generalization to other NCLs 107 4.2.4 Increasing lysosomal proteolysis: a potential therapeutic target 108 Chapter 3: Identitification of SNAT7 as a lysosomal glutamine transporter essential to the opportunistic nutrition of cancer cells 109 1. Introduction 109 1.1 The SLC38 family 109 1.2 About SNAT7 112 1.2.1. Results from Hägglung et al 112 1.2.2. SNAT7 could still be a lysosomal transporter 112 3 2. SNAT7 is a lysosomal transporter for glutamine and asparagine 113 2.1 Radioactive uptake in Xenopus oocytes 113 2.2. Sorting of SNAT7 116 2.3 Sending SNAT7 to plasma membrane by activating lysosomal exocytosis 119 2.4 Confirming SNAT7 function as lysosomal transporter for glutamine by developing an indirect assay 122 2.4.1 Principle of the test 122 2.4.2 Quantification method and determination of the optimal ester concentration 123 2.4.3 Proof of principle 125 2.4.4 Application to SNAT7 126 2.4.5 Localization of endogenous SNAT7 127 2.4.6 Direct transport assay 131 2.4.7. Control experiment: are lysosomes from SNAT7 KO cells more fragile? 134 2.4.8 Further characterization of SNAT7 activity 135 3. Does SNAT7 play a role in the nutrition of cancer cells? 140 3.1 Glutamine and cancer cells 140 3.2 SNAT7 is necessary for cancer cells to obtain glutamine from extracellular proteins 142 3.2.1 BSA can be used as a source of glutamine 142 3.2.2. SNAT7 is critical to use BSA as a source of glutamine 143 3.2.3 Control experiment: is BSA degraded properly in SNAT7 deficient cells? 147 4. Conclusion 148 4.1. Function of SNAT7 as a lysosomal transporter for glutamine and asparagine 148 4.2. Role of SNAT7 in cancer cell nutrition 149 4.2.1 Role of SNAT7 in in vivo cancer models 149 4.2.2 Relevance of macropinocytosis in the nutrition of cancer cells 149 4.2.3 Advantages and development of a SNAT7-based anti-cancer therapy 150 4.3 Importance of SNAT7 in other mechanisms 151 Conclusion: emerging roles for lysosomal membrane proteins 153 Material and methods 157 4 DNA and RNA constructs 157 Antibodies 158 Expression of proteins in Xenopus oocytes 158 Uptake of glutamine in oocytes 159 Cell-surface biotinylation 159 Electrophysiological recordings 160 Cell culture and transfection 160 Western Blot 161 Immunofluorescence 161 TFEB test 162 CRISPR-Cas9 163 Sialic acid uptake 163 Mice models 163 Preparation of hippocampal neurons 163 DQ-red-BSA uptake 163 Flow cytometry 164 Lysosomal proteolysis measures in primary fibroblasts 165 Cellular fractionation 165 Transport assay on lysosomal preparations 165 Latency test 166 Growth assays 166 References 167 5 Remerciements Je souhaite remercier Bruno Gasnier et Corinne Sagné pour m’avoir accueilli dans leur équipe et m’avoir confié ces projets. Je me sens exceptionnellement privilégié d’avoir pu compter en toutes circonstances sur deux encadrants aussi brillants que disponibles. Je souhaite remercier particulièrement Cécile Jouffret et Christopher Ribes, qui ont participé avec beaucoup d’entrain et de disponibilité à la plupart des expériences décrites dans cette thèse. Mes plus vifs remerciements aux autres membres de l’équipe : Xavier Leray, Christine Anne et Seana O’Regan pour leur soutien, leur écoute, leur patience, mais aussi pour leurs dons désintéressés de calories et de caféine, sous des formes diverses. Je souhaite également remercier les autres membres du laboratoire : Isabelle Fanget, Claire Desnos, Damien Carrel, Dany Khamsing et Solène Lebrun pour tous les bons moments passés ensemble. Je remercie également particulièrement François Darchen et Valentina Emiliani, les deux directeurs successifs du laboratoire, pour m’avoir accueilli en thèse. Je souhaite exprimer ma gratitude à l’Ecole Normale Supérieure et à Vaincre les maladies lysosomales qui ont successivement financé ma bourse de thèse, ainsi qu’à la Ligue contre le cancer qui a par ailleurs financé l’un de mes projets. Je remercie également Marielle Boonen, Michel Jadot, Agnès Journet et Jérôme Garin pour des collaborations fructueuses. Je souhaite également remercier et recommander la plate-forme de cytométrie du site des Saints-Pères de l’université Paris-Descartes et remercier plus particulièrement Stéphane Dupuy, mon interlocutrice sur place, pour ses précieux conseils.
Recommended publications
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20
    Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L
    [Show full text]
  • Biomarker Status of the Human Equilibrative Nucleoside
    cancers Article “Open Sesame?”: Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer 1,2, 1, 1,3 1 Ornella Randazzo y, Filippo Papini y, Giulia Mantini , Alessandro Gregori , Barbara Parrino 2, Daniel S. K. Liu 4 , Stella Cascioferro 2 , Daniela Carbone 2 , 1,5 4,6, 1,7, Godefridus J. Peters , Adam E. Frampton * , Ingrid Garajova y and Elisa Giovannetti 1,3,* 1 Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; [email protected] (O.R.); [email protected] (F.P.); [email protected] (G.M.); [email protected] (A.G.); [email protected] (G.J.P.); [email protected] (I.G.) 2 Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; [email protected] (B.P.); [email protected] (S.C.); [email protected] (D.C.) 3 Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy 4 Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;; [email protected] 5 Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland 6 Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK 7 Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy * Correspondence: [email protected] (A.E.F.); [email protected] (E.G.); Tel.: +31-003-120-444-2633 (E.G.) These authors contributed equally to this paper.
    [Show full text]
  • Toxicological Profile for Nitrate and Nitrite
    NITRATE AND NITRITE 29 3. HEALTH EFFECTS 3.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of nitrate and nitrite. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological, reproductive, developmental, and carcinogenic effects). These data are discussed in terms of three exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest- observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear.
    [Show full text]
  • Sialic Acid Storage Disease
    Sialic acid storage disease Description Sialic acid storage disease is an inherited disorder that primarily affects the nervous system. People with sialic acid storage disease have signs and symptoms that may vary widely in severity. This disorder is generally classified into one of three forms: infantile free sialic acid storage disease, Salla disease, and intermediate severe Salla disease. Infantile free sialic acid storage disease (ISSD) is the most severe form of this disorder. Babies with this condition have severe developmental delay, weak muscle tone ( hypotonia), and failure to gain weight and grow at the expected rate (failure to thrive). They may have unusual facial features that are often described as "coarse," seizures, bone malformations, an enlarged liver and spleen (hepatosplenomegaly), and an enlarged heart (cardiomegaly). The abdomen may be swollen due to the enlarged organs and an abnormal buildup of fluid in the abdominal cavity (ascites). Affected infants may have a condition called hydrops fetalis in which excess fluid accumulates in the body before birth. Children with this severe form of the condition usually live only into early childhood. Salla disease is a less severe form of sialic acid storage disease. Babies with Salla disease usually begin exhibiting hypotonia during the first year of life and go on to experience progressive neurological problems. Signs and symptoms of Salla disease include intellectual disability and developmental delay, seizures, problems with movement and balance (ataxia), abnormal tensing of the muscles (spasticity), and involuntary slow, sinuous movements of the limbs (athetosis). Individuals with Salla disease usually survive into adulthood. People with intermediate severe Salla disease have signs and symptoms that fall between those of ISSD and Salla disease in severity.
    [Show full text]
  • Sialin (SLC17A5) Functions As a Nitrate Transporter in the Plasma Membrane
    Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane Lizheng Qina,1, Xibao Liub,1, Qifei Suna, Zhipeng Fana, Dengsheng Xiaa, Gang Dinga, Hwei Ling Ongb, David Adamsc, William A. Gahlc, Changyu Zhengb, Senrong Qia, Luyuan Jina, Chunmei Zhanga, Liankun Gud, Junqi Hee, Dajun Dengd,2, Indu S. Ambudkarb,2, and Songlin Wanga,e,2 aSalivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China; bMolecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892; cMedical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892; dKey Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China; and eDepartment of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing 100069, China Edited by Mark Gladwin, University of Pittsburg Medical Center, Pittsburgh, PA and accepted by the Editorial Board June 5, 2012 (received for review October 13, 2011) In vivo recycling of nitrate (NO −) and nitrite (NO −) is an important Nitrate uptake into salivary glands represents the key initial step 3 2 − alternative pathway for the generation of nitric oxide (NO) and in NO clearance from the serum; however, the mechanism me- 3 − maintenance of systemic nitrate–nitrite–NO balance. More than diating transport of NO3 in salivary gland epithelial cells has not − − fl 25% of the circulating NO3 is actively removed and secreted by yet been established. In this study, we examined NO3 in ux in − + salivary glands. Oral commensal bacteria convert salivary NO3 to salivary gland cells.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Potential Roles of Nitrate and Nitrite in Nitric Oxide Metabolism in the Eye Ji Won Park1, Barbora Piknova1, Audrey Jenkins2, David Hellinga2, Leonard M
    www.nature.com/scientificreports OPEN Potential roles of nitrate and nitrite in nitric oxide metabolism in the eye Ji Won Park1, Barbora Piknova1, Audrey Jenkins2, David Hellinga2, Leonard M. Parver3 & Alan N. Schechter1* Nitric oxide (NO) signaling has been studied in the eye, including in the pathophysiology of some eye diseases. While NO production by nitric oxide synthase (NOS) enzymes in the eye has been − characterized, the more recently described pathways of NO generation by nitrate ( NO3 ) and nitrite − (NO2 ) ions reduction has received much less attention. To elucidate the potential roles of these pathways, we analyzed nitrate and nitrite levels in components of the eye and lacrimal glands, primarily in porcine samples. Nitrate and nitrite levels were higher in cornea than in other eye parts, while lens contained the least amounts. Lacrimal glands exhibited much higher levels of both ions compared to other organs, such as liver and skeletal muscle, and even to salivary glands which are known to concentrate these ions. Western blotting showed expression of sialin, a known nitrate transporter, in the lacrimal glands and other eye components, and also xanthine oxidoreductase, a nitrate and nitrite reductase, in cornea and sclera. Cornea and sclera homogenates possessed a measurable amount of nitrate reduction activity. These results suggest that nitrate ions are concentrated in the lacrimal glands by sialin and can be secreted into eye components via tears and then reduced to nitrite and NO, thereby being an important source of NO in the eye. Te NO generation pathway from L-arginine by endogenous NOS enzymes under normoxic conditions has been central in identifying the physiological roles of NO in numerous biological processes1.
    [Show full text]
  • Mucopolysaccharidosis Type IIIA, and a Child with One SGSH Mutation and One GNS Mutation Is a Carrier
    Mucopolysaccharidosis type III What is mucopolysaccharidosis type III? Mucopolysaccharidosis type III is an inherited metabolic disease that affects the central nervous system. Individuals with mucopolysaccharidosis type III have defects in one of four different enzymes required for the breakdown of large sugars known as glycosaminoglycans or mucopolysaccharides.1 The four enzymes, sulfamidase, alpha-N- acetylglucosaminidase, N-acetyltransferase, and N-acetylglucosamine-6-sulfatase, are associated with mucopolysaccharidosis types IIIA, IIIB, IIIC, and IIID, respectively.2-5 The signs and symptoms of all subtypes of mucopolysaccharidosis type III are similar and due to the build-up of the large sugar molecular heparan sulfate within lysosomes in cells. Mucopolysaccharidosis type III belongs to a group of diseases called lysosomal storage disorders and is also known as Sanfilippo syndrome.6 What are the symptoms of mucopolysaccharidosis type III and what treatment is available? Symptoms of mucopolysaccharidosis type III vary in severity and age at onset and are progressive. Affected individuals typically show no symptoms at birth.6 Signs and symptoms are typically seen in early childhood and may include:7 • Developmental and speech delays • Progressive cognitive deterioration and behavioral problems • Sleep disturbances • Frequent infections • Cardiac valve disease • Umbilical or groin hernias • Mild hepatomegaly (enlarged liver) • Decline in motor skills • Hearing loss and vision problems • Skeletal problems, including hip dysplasia and
    [Show full text]
  • Structure-Activity Relationship and Mechanistic Studies on The
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 Structure-Activity Relationship and Mechanistic Studies on the Chemopreventive Activity of Dipyridamole and Its Analogues Ja’Wanda Shavon Grant University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Grant, Ja’Wanda Shavon , "Structure-Activity Relationship and Mechanistic Studies on the Chemopreventive Activity of Dipyridamole and Its Analogues" (2008). Theses and Dissertations (ETD). Paper 100. http://dx.doi.org/10.21007/ etd.cghs.2008.0114. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Structure-Activity Relationship and Mechanistic Studies on the Chemopreventive Activity of Dipyridamole and Its Analogues Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Pharmaceutical Sciences Research Advisor John K. Buolamwini, Ph.D. Committee Richard E. Lee, Ph.D. Duane Miller, Ph.D. David Nelson, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0114 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/100 STRUCTURE-ACTIVITY RELATIONSHIP AND
    [Show full text]
  • Nucleoside Transporter Expression and Function in Cultured Mouse Astrocytes
    GLIA 52:25–35 (2005) Nucleoside Transporter Expression and Function in Cultured Mouse Astrocytes LIANG PENG,1 RONG HUANG,2 ALBERT C.H. YU,1 KING Y. FUNG,1 MICHEL P. RATHBONE,3 AND LEIF HERTZ1,2* 1Hong Kong DNA Chips, Ltd., Kowloon, Hong Kong, China 2Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 3Department of Medicine, McMaster University, Hamilton, Ontario, Canada KEY WORDS and play important roles in energy homeostasis and sig- adenosine; CNT2; ENT1; ENT2; guanosine; thymidine naling; (3) astrocytes synthesize guanine nucleotides (Pelled et al., 1999); (4) ATP is released from astrocytes during the propagation of Ca21 waves (Guthrie et al., ABSTRACT 1999) and degraded extracellularly; and (5) adenosine Uptake of purine and pyrimidine nucleosides in astrocytes is and guanosine function as neuromodulators, acting on P1 important for several reasons: (1) uptake of nucleosides con- tributes to nucleic acid synthesis; (2) astrocytes synthesize purinergic receptors of different subtypes in neurons and/ AMP, ADP, and ATP from adenosine and GTP from guano- or astrocytes (van Calker and Hamprecht, 1979; Kim sine; and (3) adenosine and guanosine function as neuromo- et al., 1991; Rathbone et al., 1999; Ciccarelli et al., 2001; dulators, whose effects are partly terminated by cellular Chen et al., 2001; Di Iorio et al., 2004; Wittendorp et al., uptake. It has previously been shown that adenosine is 2004), and cellular uptake contributes to the termination rapidly accumulated by active uptake in astrocytes (Hertz of their neuromodulator effects. However, except for ade- and Matz, Neurochem Res 14:755–760, 1989), but the ratio nosine (Hertz, 1978; Thampy and Barnes, 1983; Bender between active uptake and metabolism-driven uptake of ade- and Hertz, 1986; Hosli€ and Hosli,€ 1988; Matz and Hertz, nosine is unknown, as are uptake characteristics for guano- 1990; Bender et al., 1994; Othman et al., 2002), only little sine.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]