Biology and Ecology of Palmer Amaranth (Amaranthus Palmeri) Prashant Jha Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Ecology of Palmer Amaranth (Amaranthus Palmeri) Prashant Jha Clemson University, Jpacific10@Gmail.Com Clemson University TigerPrints All Dissertations Dissertations 12-2008 Biology and Ecology of Palmer Amaranth (Amaranthus palmeri) Prashant Jha Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Agronomy and Crop Sciences Commons Recommended Citation Jha, Prashant, "Biology and Ecology of Palmer Amaranth (Amaranthus palmeri)" (2008). All Dissertations. 296. https://tigerprints.clemson.edu/all_dissertations/296 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. BIOLOGY AND ECOLOGY OF PALMER AMARANTH (AMARANTHUS PALMERI) A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Sciences by Prashant Jha December 2008 Accepted by: Dr. Melissa B. Riley, Committee Chair Dr. Jason K. Norsworthy Dr. Krishna N. Reddy Dr. Douglas G. Bielenberg Dr. Nyal D. Camper ABSTRACT Palmer amaranth (Amaranthus palmeri S. Wats.) is a troublesome weed of crops in southeastern United States. This research highlights studies on the biology and ecology of Palmer amaranth. Following dispersal in fall, Palmer amaranth seeds require high mean temperatures of 25 to 40 C for germination, which is not likely to occur in South Carolina until the following spring. With dormancy reduction over winter, seeds can germinate at high temperatures ($25 C) and thermal amplitudes of 15 C during late spring (May) in the presence of light. A majority (>90%) of the non-dormant population in the soil seedbank emerge from early May through mid-July, with two to three peak emergence periods which often follow rainfall events. No difference in emergence was observed between no-tillage and shallow spring tillage situations. Early canopy closure in drill-seeded soybean (18-cm row width) had a suppressive effect on the emergence of Palmer amaranth cohorts following early July. This is attributed to the decrease in photosynthetic active radiation (PAR) and red:far-red (R:FR) ratio experienced by seeds lying on the soil surface beneath the canopy in no-tillage systems. Seed germination during fall (August to November) is phytochrome-regulated, with germination stimulation by R light and inhibition by FR light. Burial of seeds to a 10-cm depth for 3 to 6 months induced dormancy with a R or natural light requirement for germination. Palmer amaranth seeds developing under shade conditions (87% reduction in PAR) showed increased dormancy, a survival mechanism in low-light environment. In ii addition, seeds maturing in the bottom-third of a mother plant exhibited increased dormancy, partially explaining variability in timing and extent of germination within a single seed population. Besides exhibiting increased seed dormancy, Palmer amaranth showed photosynthetic and morphological acclimation to 87% shading. These characteristics make Palmer amaranth a troublesome weed in crop-production systems. Based on this research, an early-season glyphosate application preferably at the V3 stage of glyphosate-resistant soybean in conjunction with early planting dates (April) with narrow row (18-cm wide) spacing can be a promising strategy to reduce Palmer amaranth interference and seed production and improve soybean yields. iii DEDICATION From the core of my heart, I dedicate all the hard work and sincere efforts it took to complete my Ph.D. to my father Mr. Santosh Kumar Ojha, my mother Mrs. Narayani Ojha, my brother Mr. Sushant Jha, and my beloved wife Mrs. Anjani Jha. My father has been a positive force and motivation behind my successful achievement of this endeavor. I am indebted to my wife, mother, and brother for all their love, affection, sacrifice, and incessant encouragement. I am thankful to the almighty for giving me strength and blessings. iv ACKNOWLEDGMENTS I wish to express my sincere appreciation and regards to my advisory committee for their guidance in successful completion of my Ph.D. program. I like to give my heartfelt thanks to my major advisor, Dr. Melissa Riley, for her countless hours spent on the achievement of my research objectives and writing this dissertation. She is an excellent teacher and one of the best persons I know for teaching analytical techniques used in plant science research. I really appreciate her mentorship and extended support. I started my Ph.D. program in weed science with Dr. Jason Norsworthy. I am grateful to him for providing me the opportunity to gain diversified knowledge and research experience in weed science discipline. Besides teaching the basic and applied principles of weed science, he taught me the skills needed to achieve success in a competitive environment. He is one of the best mentors I know. I can never think of completing my research without his support and guidance and could never thank him enough for his time and efforts in making my dissertation research worth publishing in high quality journals. I want to thank Dr. Douglas Bielenberg for his guidance in successfully completion of a major objective of my research. I also thank Dr. Krishna Reddy and Dr. Dwight Camper for their valuable suggestions in improving this dissertation. I have no words to express my gratitude to my best friend, Mr. Mayank Malik, for his moral support, untiring help, and whole hearted cooperation. The technical assistance of Mr. Rex Blanton, Mrs. Fran Harper, and Mrs. Rachel Rowe will always be appreciated. v TABLE OF CONTENTS Page TITLE PAGE. ........................................................ i ABSTRACT..........................................................ii DEDICATION ....................................................... iv ACKNOWLEDGMENTS ...............................................v LIST OF TABLES ................................................... viii LIST OF FIGURES ....................................................x CHAPTER 1. LITERATURE REVIEW..........................................1 Palmer amaranth ............................................... 1 Weed Seedbank Dynamics and Seedling Emergence . 1 Seed Dormancy and Germination ...................................3 Effect of Maternal Environment .................................4 Effect of Burial Depth .........................................5 Effect of Temperature .........................................7 Effect of Light ...............................................8 Effect of Hormones ...........................................8 Effect of Stratification .........................................9 Effect of Scarification ........................................10 Physiological Effects of Shading on Survival and Growth . 10 Weed Control..................................................11 Effect of Glyphosate Timing ...................................11 Effect of Row Spacing........................................12 Literature Cited ................................................14 2. SOYBEAN CANOPY AND TILLAGE EFFECTS ON EMERGENCE OF PALMER AMARANTH FROM A NATURAL SEEDBANK . 21 Abstract ......................................................21 Introduction ...................................................22 Materials and Methods...........................................24 Results and Discussion ..........................................27 vi Literature Cited ................................................34 3. TEMPERATURE AND LIGHT REQUIREMENTS FOR PALMER AMARANTH SEED GERMINATION OVER A 12-MONTH PERIOD ............................................48 Abstract ......................................................48 Introduction ...................................................50 Materials and Methods...........................................54 Results and Discussion ..........................................58 Literature Cited ................................................67 4. SEED DORMANCY OF PALMER AMARANTH AFFECTED BY MATERNAL SHADING AND SEED LOCATION ON THE MOTHER PLANT.................................................78 Abstract ......................................................78 Introduction ...................................................80 Materials and Methods...........................................84 Results and Discussion ..........................................89 Literature Cited ................................................98 5. ACCLIMATION OF PALMER AMARANTH TO SHADING . 105 Abstract .....................................................105 Introduction ..................................................106 Materials and Methods..........................................109 Results and Discussion .........................................114 Literature Cited ...............................................121 6. INFLUENCE OF GLYPHOSATE TIMING AND ROW WIDTH ON PALMER AMARANTH AND PUSLEY DEMOGRAPHICS IN GLYPHOSATE-RESISTANT SOYBEAN.............................130 Abstract .....................................................130 Introduction ..................................................132 Materials and Methods..........................................136 Results and Discussion .........................................140 Literature Cited ...............................................155 7. CONCLUSIONS .................................................166 vii LIST OF TABLES Table Page 3.1 Two-way ANOVA for determining the main effects
Recommended publications
  • PPO2 Mutations in Amaranthus Palmeri:Implications on Cross-Resistance
    agriculture Article PPO2 Mutations in Amaranthus palmeri: Implications on Cross-Resistance Pâmela Carvalho-Moore 1,2 , Gulab Rangani 1, James Heiser 3, Douglas Findley 4, Steven J. Bowe 4 and Nilda Roma-Burgos 1,* 1 Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] (P.C.-M.); [email protected] (G.R.) 2 Former Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA 3 Fisher Delta Research Center, College of Agriculture, University of Missouri, Portageville, MO 63873, USA; [email protected] 4 BASF Corporation, Research Triangle Park, NC 27709, USA; douglas.fi[email protected] (D.F.); [email protected] (S.J.B.) * Correspondence: [email protected] Abstract: In Arkansas, resistance to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides in Amaranthus palmeri S. Wats. is mainly due to target site mutations. Although A. palmeri PPO-mutations are well investigated, the cross-resistance that each ppo mutant endows to weed populations is not yet well understood. We aimed to evaluate the response of PPO-resistant A. palmeri accessions, harboring the ppo2 mutations DG210 and G399A, to multiple PPO-inhibiting herbicides. Six resistant and one susceptible field accessions were subjected to a dose–response assay with fomesafen, and selected survivors from different fomesafen doses were genotyped to characterize the mutation profile. The level of resistance to fomesafen was determined and a cross-resistance assay was conducted with 1 Citation: Carvalho-Moore, P.; and 2 times the labeled doses of selected PPO herbicides. The accession with higher predicted dose Rangani, G.; Heiser, J.; Findley, D.; to control 50% of the population (ED50) had a higher frequency of DG210-homozygous survivors.
    [Show full text]
  • Amaranthus Palmeri) in 2,4-D , Glufosinate-, and Glyphosate-Resistant Soybean
    Weed Technology Management of glyphosate-resistant Palmer – www.cambridge.org/wet amaranth (Amaranthus palmeri) in 2,4-D , glufosinate-, and glyphosate-resistant soybean 1 2 3 4 Research Article Chandrima Shyam , Parminder S. Chahal , Amit J. Jhala and Mithila Jugulam 1 2 Cite this article: Shyam C, Chahal PS, Jhala AJ, Graduate Student, Department of Agronomy, Kansas State University, Manhattan, KS, USA; Postdoctoral Research 3 Jugulam M (2021) Management of glyphosate- Associate, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Associate resistant Palmer amaranth (Amaranthus Professor, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA and palmeri) in 2,4-D–, glufosinate-, and 4Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA glyphosate-resistant soybean. Weed Technol. 35:136–143. doi: 10.1017/wet.2020.91 Abstract Received: 7 May 2020 Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in Revised: 7 July 2020 soybean production fields in Nebraska and many other states in the United States. Soybean Accepted: 29 July 2020 TM First published online: 18 August 2020 resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3 ) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide Associate Editor: programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb Kevin Bradley, University of Missouri LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and ’ Nomenclature: yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower sfield 2,4-D chlorimuron-ethyl; cloransulam-methyl; infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.
    [Show full text]
  • Species Identification, Phylogenetic Analysis and Detection of Herbicide
    www.nature.com/scientificreports OPEN Species identifcation, phylogenetic analysis and detection of herbicide‑resistant biotypes of Amaranthus based on ALS and ITS Han Xu1*, Xubin Pan1, Cong Wang1, Yan Chen1, Ke Chen1, Shuifang Zhu1 & Rieks D. van Klinken2 The taxonomically challenging genus Amaranthus (Family Amaranthaceae) includes important agricultural weed species that are being spread globally as grain contaminants. We hypothesized that the ALS gene will help resolve these taxonomic challenges and identify potentially harmful resistant biotypes. We obtained 153 samples representing 26 species from three Amaranthus subgenera and included in that incorporated ITS, ALS (domains C, A and D) and ALS (domains B and E) sequences. Subgen. Albersia was well supported, but subgen. Amaranthus and subgen. Acnida were not. Amaranthus tuberculatus, A. palmeri and A. spinosus all showed diferent genetic structuring. Unique SNPs in ALS ofered reliable diagnostics for most of the sampled Amaranthus species. Resistant ALS alleles were detected in sixteen A. tuberculatus samples (55.2%), eight A. palmeri (27.6%) and one A. arenicola (100%). These involved Ala122Asn, Pro197Ser/Thr/Ile, Trp574Leu, and Ser653Thr/Asn/Lys substitutions, with Ala122Asn, Pro197Thr/Ile and Ser653Lys being reported in Amaranthus for the frst time. Moreover, diferent resistant mutations were present in diferent A. tuberculatus populations. In conclusion, the ALS gene is important for species identifcation, investigating population genetic diversity and understanding resistant evolution within the genus Amaranthus. Amaranthus (Family Amaranthaceae) is a cosmopolitan genus with at least 70 species, including ancient culti- vated plants such as the grains Amaranthus cruentus, A. caudatus and A. hypochondriacus, the leafy vegetable and ornamental A.
    [Show full text]
  • Palmer Amaranth Amaranthus Palmeri Reviewer Affiliation/Organization Date (Mm/Dd/Yyyy) Roger Becker University of Minnesota 8/08/2014
    MN NWAC Risk Common Name Latin Name Assessment Worksheet (04-2011) Palmer Amaranth Amaranthus palmeri Reviewer Affiliation/Organization Date (mm/dd/yyyy) Roger Becker University of Minnesota 8/08/2014 Box Question Answer Outcome 1 Is the plant species or genotype non-native to Yes, non-native in Minnesota. Is native to the southern Yes. Go to box 3. Minnesota? U.S. and Mexico; native to North America. 2 Does the plant species pose significant human or livestock concerns or has the potential to significantly harm agricultural production? A. Does the plant have toxic qualities that pose a significant risk to livestock, wildlife, or people? B. Does the plant cause significant financial losses associated with decreased yields, reduced quality, or increased production costs? 3 Is the plant species, or a related species, Yes. Palmer amaranth is a severe problem in summer Yes. Go to Box 6. documented as being a problem elsewhere? climates similar to Minnesota. (see Hager 2013; Hartzler 2014a; and Legleiter and Johnson 2013). It has not been documented as a problem in states with winter climates similar to Minnesota, but it is anticipated it will do very well since it is an annual with a seedbank and seedlings that have performed well in states with freezing winter temperatures, and portions of the growing season in Minnesota are similar to locations further south where Palmer amaranth is a severe problem. 4 Is the plant species’ life history & Growth Yes, documented in disparate articles, but oddly no Blue text is provided as requirements understood? classic biology of Palmer amaranth review article additional information could be found.
    [Show full text]
  • Status of Amaranthus Species in Ohio Crop Production Thesis Presented in Partial Fulfillment of the Requirements for the Degree
    Status of Amaranthus Species in Ohio Crop Production Thesis Presented in partial fulfillment of the requirements for the degree Master of Science in the Graduate School of The Ohio State University By Samantha N. Konkle, B.S. Horticulture and Crop Science Graduate Program The Ohio State University 2015 Thesis Committee: Dr. Mark M. Loux, Advisor Dr. Laura Lindsey Dr. Kristen Mercer Copyright by Samantha N. Konkle 2015 Abstract Studies were conducted in 2012, 2013, and 2014 with the objectives of: 1) Determining the frequency and distribution of horseweed (Conyza canadensis), giant ragweed (Ambrosia trifida), and three Amaranthus species, Palmer amaranth (Amaranthus palmeri), waterhemp (Amaranthus tuberculatus), and redroot pigweed (Amaranthus retroflexus), in Ohio soybean fields at the end of the growing season; 2) Determining the response of Ohio Amaranthus species to herbicide site of action groups 2, 9, and 14; and 3) Developing herbicide-based management strategies for herbicide-resistant redroot pigweed. A survey was conducted in 2012, 2013, and 2014 in 52 Ohio counties just prior to soybean harvest, and each soybean field encountered was assessed for infestation level of horseweed, giant ragweed, and Amaranthus species. Amaranthus species were the least frequent in comparison with horseweed and giant ragweed in all three years of the survey. Palmer amaranth was not observed on the survey in any of the three years, but seed samples were collected from growers and provided by agribusinesses. Waterhemp infestations were observed in four and ten fields in 2013 and 2014, respectively. Redroot pigweed infestations occurred in 34, 19, and 2 fields in 2012, 2013, and 2014, ii respectively.
    [Show full text]
  • Herbicide-Resistant Palmer Amaranth (Amaranthus Palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management
    Chapter 1 Herbicide-Resistant Palmer amaranth (Amaranthus palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management Parminder S. Chahal, Jatinder S. Aulakh, M. Jugulam and Amit J. Jhala Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61512 Abstract Palmer amaranth, a dioecious summer annual species, is one of the most trouble‐ some weeds in the agronomic crop production systems in the United States. In the last two decades, continuous reliance on herbicide(s) with the same mode of action as the sole weed management strategy has resulted in the evolution of herbicide- resistant (HR) weeds, including Palmer amaranth. By 2015, Palmer amaranth bio‐ types had been confirmed resistant to acetolactate synthase (ALS)-inhibitors, dinitroanilines, glyphosate, hydroxyphenylpyruvate dioxygenase (HPPD)-inhibi‐ tors, and triazine herbicides in some parts of the United States along with multiple HR biotypes. Mechanisms of herbicide-resistance in Palmer amaranth are discussed in this chapter. Preplant herbicide options including glufosinate, 2,4-D, and dicam‐ ba provide excellent Palmer amaranth control; however, their application is limited before planting crops, which is often not possible due to unfavorable weather con‐ ditions. Agricultural biotechnology companies are developing new multiple HR crops that will allow the post-emergence application of respective herbicides for management of HR weeds, including Palmer amaranth. For the effective in-crop management of Palmer amaranth, and to reduce the potential for the evolution of other HR weeds, growers should apply herbicides with different modes of action in tank-mixture and should also incorporate cultural practices including inversion till‐ age and cover crops along with herbicide programs.
    [Show full text]
  • The Biology and Management of Palmer Amaranth (Amaranthus Palmeri S
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 12-2016 The biology and management of Palmer amaranth (Amaranthus palmeri S. Wats) in Indiana Douglas J. Spaunhorst Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Biology Commons Recommended Citation Spaunhorst, Douglas J., "The biology and management of Palmer amaranth (Amaranthus palmeri S. Wats) in Indiana" (2016). Open Access Dissertations. 1003. https://docs.lib.purdue.edu/open_access_dissertations/1003 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. i THE BIOLOGY AND MANAGEMENT OF PALMER AMARANTH (AMARANTHUS PALMERI S. WATS) IN INDIANA A Dissertation Submitted to the Faculty of Purdue University by Douglas J. Spaunhorst In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy i December 2016 Purdue University West Lafayette, Indiana ProQuest Number:10245028 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10245028 Published by ProQuest LLC ( 2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O.
    [Show full text]
  • Of Amaranthus Palmeri
    International Research Journal of Biological Sciences ________________ _______ ___________ E-ISSN 2278-3202 Vol. 5(5), 35-43, May (201 6) Int. Res. J. Biological Sci. Antioxidant Activities of Phytonutrient of Amaranthus Palmeri Rajeshwari A. 1* , Thammanna Gowda S.S. 2 and Somashekar G.N .3 1Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, B.G. Nagar, Ma ndya District, Karnataka. India 2Central Research Lab., Adichunchanagiri Institute of Medical Sciences., B.G. Nagar, Mandya District, Karnataka. India. B.G. N agar, Mandya District, Karnataka. India 3Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, B.G. Nagar, Mandya Di strict, Karnataka. India [email protected] Available online at: www.isca.in , www.isca.me Received 31 st March 2016, revised 04 th April 2016, accepted 10 th May 201 6 Abstract Amaranthus is commonly consumed green leafy vegetable in India. It is bushy perennial herb available throughout the year in India. Animal experiments and human studies have shown that, it is an effective hypoglycemic and hypocholesterolaemic agent. Amaranthus leaves rich in carbohydrates, proteins and vitamin A, vit K and vit C. It also contains minerals such as iron, magnesium, calcium and phosphorous. It reduces bad cholesterol and anemia. In the current study, we evaluated the water, methanol, and chloroform and h exane extract of Amaranthus in-terms of their antioxidant activity in -vitro models. Ours studies proved that, compared to all the other extracts, methanol and water extracts showed more activity. Among these two extracts, water extract possess highest anti oxidant activity in all the model systems. Lipid peroxidation activity of the was 75 and 66% in both linoleic and RBC membrane model system.
    [Show full text]
  • Amaranthus Palmeri
    EPPO Datasheet: Amaranthus palmeri Last updated: 2021-02-02 IDENTITY Preferred name: Amaranthus palmeri Authority: Watson Taxonomic position: Plantae: Magnoliophyta: Angiospermae: Basal core eudicots: Caryophyllales: Amaranthaceae: Amaranthoideae Common names: Palmer amaranth (US), careless weed (US), dioecious amaranth view more common names online... EPPO Categorization: A2 list, Alert list (formerly) view more categorizations online... EPPO Code: AMAPA more photos... GEOGRAPHICAL DISTRIBUTION History of introduction and spread In North America, A. palmeri has been historically reported as native to the Sonoran Desert (covering a large part of Southwestern United States and Northwest Mexico) (Sauer, 1955; Mosyakin & Robertson, 1997). In recent decades, it has expanded its range to occupy many states across the USA but is most common and problematic in the southern tier states (Louisiana, Arkansas, Mississippi, Alabama, Florida, Georgia, North and South Carolina). The Canadian Food Inspection Agency (2018) details that the species is considered to be present but highlights the ‘significant uncertainty’ regarding the current status. It is unknown if populations of A. palmeri currently occur in Ontario in areas where it was previously reported. Additionally, both Mosyakin & Robertson (1997) and USDA (2019) report the species as present in Australia but it remains uncertain if the species does occur in Australia. A. palmeri was first observed in the EPPO region (e.g. in Sweden) in the early 1900s and is now recorded as established in a few EPPO countries and transient in several others. In some countries, occurrences have increased in recent years. For example, in Spain, A. palmeri was first found in 2007 dispersed among crop fields (maize) and adjacent field margins.
    [Show full text]
  • Prevention and Control of Glyphosate-Resistant Pigweed in Soybean and Cotton
    Agriculture and Natural Resources FSA2152 Prevention and Control of Glyphosate­ Resistant Pigweed in Soybean and Cotton Bob Scott Amaranthus palmeri (also 2010 Palmer a. Distribution referred to as Palmer amaranth or Professor ­ Weed Scientist Randolph Clay Baxter Fulton Benton Carroll Boone Palmer pigweed) is considered the Marion Izard Greene Madison Sharp Lawrence most troublesome weed in Arkansas Washington Newton Searcy Stone Craighead Mississippi Ken Smith Independence crop production. The rapid growth, Poinsett Crawford Johnson Van Buren Professor ­ Weed Scientist Cleburne Jackson Franklin aggressive competition, extremely Pope Conway Cross Crittenden White prolific seed production and germina­ Sebastian Logan Faulkner Woodruff Yell Perry St. Francis tion throughout the season make Scott Prairie Pulaski Lee Lonoke Monroe Palmer amaranth a multimillion Saline Montgomery Garland Polk Phillips dollar pest each year in our state. Hot Spring Arkansas Howard Grant Jefferson Pike Sevier Clark Dallas Cleveland Lincoln Glyphosate­tolerant crops, espe­ Desha Ouachita Little River Hempstead cially cotton and soybean, have been Nevada Calhoun Drew Bradley readily adopted by farmers. Currently, Miller Chicot Ashley Columbia Union greater than 98% of these crops Lafayette planted in Arkansas are glyphosate­ tolerant. Adoption of glyphosate­ * 30 Counties/40% tolerant crops has allowed farmers to increase conservation tillage programs FIGURE 1. Counties highlighted in red and farm a larger number of acres contain confirmed cases of glyphosate­ with less equipment and labor. In resistant pigweed. Arkansas, the number of farms with greater than 2,000 acres has A Palmer amaranth population increased by 30% since the adoption of found in Mississippi County during glyphosate­tolerant crops. the 2005 growing season was the first confirmed case of glyphosate­resistant Most of the common agricultural pigweed in Arkansas.
    [Show full text]
  • Palmer Amaranth (Amaranthus Palmeri): a Review
    Weed Technology 2013 27:12–27 Review Palmer Amaranth (Amaranthus palmeri): A Review Sarah M. Ward, Theodore M. Webster, and Larry E. Steckel* In little over 20 yr, Palmer amaranth has risen from relative obscurity to its current status as one of the most widespread, troublesome, and economically damaging agronomic weeds in the southeastern U.S. Numerous factors have enabled Palmer amaranth to become such a dominant and difficult-to-control weed, including its rapid growth rate, high fecundity, genetic diversity, ability to tolerate adverse conditions, and its facility for evolving herbicide resistance. It is both a serious threat to several U.S. cropping systems and a fascinating model weed. In this paper, we review the growing body of literature on Palmer amaranth to summarize the current state of knowledge on the biology, agricultural impacts, and management of this weed, and we suggest future directions for research. Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA. Key words: Biology, genetics, physiology, herbicide resistance, crop interference, integrated management. En poco ma´sde20anos,˜ Amaranthus palmeri ha salido de una relativa oscuridad a su estado actual como una de las malezas agr´ıcolas ma´s ampliamente distribuida, ma´s problema´tica y economicamente´ danina˜ en el sureste de los Estados Unidos. Numerosos factores le han permitido a A. palmeri convertirse en una maleza tan dominante y dif´ıcil de controlar, incluyendo su ra´pida tasa de crecimiento, alta fecundidad, diversidad genetica,´ habilidad para tolerar condiciones adversas, y su facilidad para evolucionar resistencia a herbicidas. Es una amenaza para varios sistemas de cultivos en los Estados Unidos, pero tambien´ es una maleza modelo fascinante.
    [Show full text]
  • Palmer Amaranth (Amaranthus Palmeri) and Velvetleaf (Abutilon Theophrasti) Control in No-Tillage Conventional (Non–Genetically
    Weed Technology Palmer Amaranth (Amaranthus palmeri) and Velvetleaf (Abutilon theophrasti) Control in cambridge.org/wet No-Tillage Conventional (Non–genetically engineered) Soybean Using Overlapping Research Article Residual Herbicide Programs Cite this article: Sarangi D and Jhala AJ. (2019) Palmer Amaranth (Amaranthus 1 2 palmeri) and Velvetleaf (Abutilon theophrasti) Debalin Sarangi and Amit J. Jhala Control in No-Tillage Conventional (Non– genetically engineered) Soybean Using 1Postdoctoral Research Associate, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Overlapping Residual Herbicide Programs. Lincoln, NE, USA and 2Associate Professor, Department of Agronomy and Horticulture, University of Nebraska– Weed Technol 33:95–105. doi: 10.1017/ Lincoln, Lincoln, NE, USA wet.2018.78 Received: 1 May 2018 Abstract Revised: 25 July 2018 Accepted: 10 August 2018 Due to depressed corn and soybean prices over the last few years in the United States, growers First published online: 9 October 2018 in Nebraska are showing interest in no-tillage (hereafter referred to as no-till) conventional (non–genetically engineered [non-GE]) soybean production. Due to the increasing number of Associate Editor: herbicide-resistant weeds in the United States, weed control in no-till non-GE soybean using Aaron Hager, University of Illinois POST herbicides is a challenge. The objectives of this study were to compare PRE-only, PRE Nomenclature: followed by (fb) POST, and PRE fb POST with residual (POST-WR) herbicide programs for Chlorimuron-ethyl; flumioxazin; fluthiacet- Palmer amaranth and velvetleaf control and soybean injury and yield, as well as to estimate methyl; fomesafen; pyroxasulfone; the gross profit margins and benefit–cost ratio of herbicide programs.
    [Show full text]