agriculture Article PPO2 Mutations in Amaranthus palmeri: Implications on Cross-Resistance Pâmela Carvalho-Moore 1,2 , Gulab Rangani 1, James Heiser 3, Douglas Findley 4, Steven J. Bowe 4 and Nilda Roma-Burgos 1,* 1 Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA;
[email protected] (P.C.-M.);
[email protected] (G.R.) 2 Former Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA 3 Fisher Delta Research Center, College of Agriculture, University of Missouri, Portageville, MO 63873, USA;
[email protected] 4 BASF Corporation, Research Triangle Park, NC 27709, USA; douglas.fi
[email protected] (D.F.);
[email protected] (S.J.B.) * Correspondence:
[email protected] Abstract: In Arkansas, resistance to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides in Amaranthus palmeri S. Wats. is mainly due to target site mutations. Although A. palmeri PPO-mutations are well investigated, the cross-resistance that each ppo mutant endows to weed populations is not yet well understood. We aimed to evaluate the response of PPO-resistant A. palmeri accessions, harboring the ppo2 mutations DG210 and G399A, to multiple PPO-inhibiting herbicides. Six resistant and one susceptible field accessions were subjected to a dose–response assay with fomesafen, and selected survivors from different fomesafen doses were genotyped to characterize the mutation profile. The level of resistance to fomesafen was determined and a cross-resistance assay was conducted with 1 Citation: Carvalho-Moore, P.; and 2 times the labeled doses of selected PPO herbicides. The accession with higher predicted dose Rangani, G.; Heiser, J.; Findley, D.; to control 50% of the population (ED50) had a higher frequency of DG210-homozygous survivors.