Eco-Environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
China: Xining Flood and Watershed Management Project
E2007 V4 Public Disclosure Authorized China: Xining Flood and Watershed Management Project Public Disclosure Authorized Environmental Assessment Summary Public Disclosure Authorized Environmental Science Research & Design Institute of Gansu Province October 1, 2008 Public Disclosure Authorized Content 1. Introduction .................................................................................................................................. 1 1.1 Project background............................................................................................................ 1 1.2 Basis of the EA.................................................................................................................. 3 1.3 Assessment methods and criteria ...................................................................................... 4 1.4 Contents of the report........................................................................................................ 5 2. Project Description....................................................................................................................... 6 2.1 Task................................................................................................................................... 6 2.2 Component and activities.................................................................................................. 6 2.3 Linked projects................................................................................................................ 14 2.4 Land requisition and resettlement -
Qinghai WLAN Area 1/13
Qinghai WLAN area NO. SSID Location_Name Location_Type Location_Address City Province 1 ChinaNet Quality Supervision Mansion Business Building No.31 Xiguan Street Xining City Qinghai Province No.160 Yellow River Road 2 ChinaNet Victory Hotel Conference Center Convention Center Xining City Qinghai Province 3 ChinaNet Shangpin Space Recreation Bar No.16-36 Xiguan Street Xining City Qinghai Province 4 ChinaNet Business Building No.372 Qilian Road Xining City Qinghai Province Salt Mansion 5 ChinaNet Yatai Trade City Large Shopping Mall Dongguan Street Xining City Qinghai Province 6 ChinaNet Gome Large Shopping Mall No.72 Dongguan Street Xining City Qinghai Province 7 ChinaNet West Airport Office Building Business Building No.32 Bayi Road Xining City Qinghai Province Government Agencies 8 ChinaNet Chengdong District Government Xining City Qinghai Province and Other Institutions Delingha Road 9 ChinaNet Junjiao Mansion Business Building Xining City Qinghai Province Bayi Road Government Agencies 10 ChinaNet Higher Procuratortate Office Building Xining City Qinghai Province and Other Institutions Wusi West Road 11 ChinaNet Zijin Garden Business Building No.41, Wusi West Road Xining City Qinghai Province 12 ChinaNet Qingbai Shopping Mall Large Shopping Mall Xining City Qinghai Province No.39, Wusi Avenue 13 ChinaNet CYTS Mansion Business Building No.55-1 Shengli Road Xining City Qinghai Province 14 ChinaNet Chenxiong Mansion Business Building No.15 Shengli Road Xining City Qinghai Province 15 ChinaNet Platform Bridge Shoes City Large Shopping -
An Empirical Study on the Coordinated Development of Economy and Ecological Environment of Eastern City Group in Qinghai Province
E3S Web of Conferences 23 6 , 03015 (2021) https://doi.org/10.1051/e3sconf/202123603015 ICERSD 2020 An Empirical Study on the Coordinated Development of Economy and Ecological Environment of Eastern City Group in Qinghai Province Yatian Liu1,a , Shengxi Ding2* 1 College of Finance and Economics, Qinghai University,Qinghai , Xining ,China 2 College of Finance and Economics, Qinghai University,Qinghai , Xining ,China Abstract. Firstly, this article uses the Entropy method to calculate the weights of economic development and ecological environment indicators in the eastern urban agglomeration of Qinghai Province from 2005 to 2019. Secondly, this article uses the calculated weights and linear weighting functions to construct evaluation models for economic development and ecological environment development, respectively. The results show that the comprehensive development level of the economic development in the eastern urban agglomeration of Qinghai Province cities is gradually rising, and the comprehensive development level of the ecological environment fluctuates slightly but the overall development trend is increasing. Then, using the Environmental-Economic Coordination degree evaluation model, quantitative analysis and evaluation of the Environmental-Economic system coordination degree, it is found that the coordinated development of the economic and ecological environment of the eastern urban agglomeration in Qinghai Province is relatively well. Finally, it analysis and proposes countermeasures and suggestions to promote the coordinated -
Tibet Outside the TAR Page 2159
CFP-W, Chentsa Chinese: Jianza Xian Alliance for Research in Tibet (ART) Tibet Outside the TAR page 2159 roll/neg: 54:15 subject: wide angle view of the town location: Chentsa Dzong CFP-W-éE,, Malho -é, Tibetan Autonomous Prefecture, Tsongön UWê-¢éP, [Ch: Jianza , Huangnan TAP, Qinghai Province] approx. date: winter 1995/1996 comment: In the distance is the Machu (Huanghe, Yellow R.). Across the river is Haidong Prefecture with two million inhabitants, at least two thirds of them Chinese and Hui. Official population in Chentsa is about 49,000, with a 60% Tibetan majority claimed. The true Tibetan proportion is probably lower. Demographic pressure is intense: population density in Chentsa, the nearest to Xining and Haidong, is 28 persons/km2 . The next county, the capital, Regong, has 21. In Tsekhog it is 7 and only 4 in Yülgan. (Viewed from the south.) © 1997 Alliance for Research in Tibet (ART), all rights reserved Alliance for Research in Tibet (ART) Tibet Outside the TAR page 2161 b. Chentsa [Ch: Jianza] i. Brief description and impressions Chentsa CFP-W-éE, (Ch. Jianza Xian ) is one of the most vulnerable of all the Tibetan counties to patterns of development preferred by China. Only the Yellow River (Ma Chu), edging its northern border, now divides it from the densely-populated Chinese and Hui region of Haidong Prefecture. This geographical feature once served as a clear and formidable marker between a totally Tibetan world to the south and a region which, though sinicizing gradually over the centuries, did not overleap the Yellow River until the Communist Chinese occupation. -
54026-001: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River E
Technical Assistance Report Project Number: 54026-001 Knowledge and Support Technical Assistance Cluster (C-KSTA) October 2020 People’s Republic of China: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River Ecological Corridor This document is being disclosed to the public in accordance with ADB’s Access to Information Policy. CURRENCY EQUIVALENTS (as of 30 September 2020) Currency unit – yuan (CNY) CNY1.00 = $0.1467 $1.00 = CNY6.8160 ABBREVIATIONS ADB – Asian Development Bank EARD – East Asia Department PRC – People’s Republic of China TA – technical assistance YREB – Yangtze River Economic Belt YREC – Yellow River Ecological Corridor NOTE In this report, "$" refers to United States dollars. Vice-President Ahmed M. Saeed, Operations 2 Director General James P. Lynch, East Asia Department (EARD) Director Qingfeng Zhang, Environment, Natural Resources, and Agriculture Division (EAER), EARD Team leaders Suzanne K. Robertson, Principal Natural Resources and Agriculture Specialist, EAER, EARD Silvia Cardascia, Young Professional, EAER, EARD Team members Xueliang Cai, Water Resources Specialist, EAER, EARD Mingyuan Fan, Principal Water Resources Specialist, EAER, EARD Dongmei Guo, Environment Specialist, EAER, EARD Rabindra Osti, Senior Water Resources Specialist, EAER, EARD Noreen Joy Ruanes, Senior Operations Assistant, EAER, EARD Au Shion Yee, Senior Water Resources Specialist, EAER, EARD In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. CONTENTS Page KNOWLEDGE AND SUPPORT TECHNICAL ASSISTANCE AT A GLANCE I. -
Studies on Ethnic Groups in China
Kolas&Thowsen, Margins 1/4/05 4:10 PM Page i studies on ethnic groups in china Stevan Harrell, Editor Kolas&Thowsen, Margins 1/4/05 4:10 PM Page ii studies on ethnic groups in china Cultural Encounters on China’s Ethnic Frontiers Edited by Stevan Harrell Guest People: Hakka Identity in China and Abroad Edited by Nicole Constable Familiar Strangers: A History of Muslims in Northwest China Jonathan N. Lipman Lessons in Being Chinese: Minority Education and Ethnic Identity in Southwest China Mette Halskov Hansen Manchus and Han: Ethnic Relations and Political Power in Late Qing and Early Republican China, 1861–1928 Edward J. M. Rhoads Ways of Being Ethnic in Southwest China Stevan Harrell Governing China’s Multiethnic Frontiers Edited by Morris Rossabi On the Margins of Tibet: Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen Kolas&Thowsen, Margins 1/4/05 4:10 PM Page iii ON THE MARGINS OF TIBET Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen UNIVERSITY OF WASHINGTON PRESS Seattle and London Kolas&Thowsen, Margins 1/7/05 12:47 PM Page iv this publication was supported in part by the donald r. ellegood international publications endowment. Copyright © 2005 by the University of Washington Press Printed in United States of America Designed by Pamela Canell 12 11 10 09 08 07 06 05 5 4 3 2 1 All rights reserved. No part of this publication may be repro- duced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any infor- mation storage or retrieval system, without permission in writ- ing from the publisher. -
Characteristics and Changes of Streamflow on The
Journal of Hydrology: Regional Studies 2 (2014) 49–68 Contents lists available at ScienceDirect Journal of Hydrology: Regional Studies j ournal homepage: www.elsevier.com/locate/ejrh Review Characteristics and changes of streamflow on the Tibetan Plateau: A review a,∗ b a a Lan Cuo , Yongxin Zhang , Fuxin Zhu , Liqiao Liang a Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China b Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA a r t i c l e i n f o a b s t r a c t Article history: Study region: The Tibetan Plateau (TP). Received 5 June 2014 Study focus: The TP exerts great influence on regional and global Received in revised form 7 August 2014 climate through thermal and mechanical forcings. The TP is also Accepted 13 August 2014 the headwater of large Asian rivers that provide water for billions of people and numerous ecosystems. Understanding the character- Keywords: istics and changes of streamflow on the TP will help manage water Streamflow resources under changing environment. Three categories of rivers River basins (the Pacific Ocean, the Indian Ocean, and the interior) on the TP Tibetan Plateau were examined for their seasonal and long term change patterns. Climate change Outstanding research issues were also identified. Human activity New hydrological insights for the region: Streamflow follows the monthly patterns of precipitation and temperature in that all peak in May–September. Streamflow changes are affected by climate change and human activities depending on the basins. -
Occurrence and Risks of Antibiotics in an Urban River in Northeastern
www.nature.com/scientificreports OPEN Occurrence and risks of antibiotics in an urban river in northeastern Tibetan Plateau Yuzhu Kuang1, Xiaoyu Guo1, Jingrun Hu2, Si Li3, Ruijie Zhang2, Qiang Gao4, Xi Yang4, Qian Chen4 & Weiling Sun2,4* There is a dearth of information on the occurrence and risks of antibiotics in the urban rivers from plateau areas. This study investigated 83 antibiotics in water and sediments of an urban river and efuents of sewage treatment plants (E-STPs) in Xining, Qinghai (northeastern Tibetan Plateau). Fifty- three antibiotics were detected, and the concentrations of individual antibiotics varied in the range of undetected (ND)-552 ng/L in water, ND-164 ng/g in sediments, and ND-3821 ng/L in E-STPs. Seasonal diferences of antibiotic concentrations were signifcant for water samples (p < 0.05) but insignifcant for sediments (p > 0.05). In urban area, E-STP is the main source of antibiotics in the river, while runof from manured cropland contributes partially to antibiotics in the river in the suburban area. The antibiotic compositions in water were diferent from those in sediments, but were similar to those in E-STPs. Notably, because of strong solar radiation and long sunshine hours in the plateau area, low levels of quinolones, which are sensitive to photolysis, were observed in river water. Moreover, norfoxacin and enrofoxacin, observed in urban river from other regions of China, were not detected in the Huangshui River water. The occurrence of ofoxacin, erythromycin, roxithromycin, clarithromycin, and trimethoprim in E-STPs may induce a possible risk to antibiotic resistance evolution. -
China's Developing Western Region with a Focus on Qinghai
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Anja Lahtinen GOVERNANCE MATTERS CHINA’S DEVELOPING WESTERN REGION WITH A FOCUS ON QINGHAI PROVINCE ACADEMIC DISSERTATION To be publicly discussed, by due permission of the Faculty of Arts at the University of Helsinki, in Auditorium XII, Unioninkatu 34, on the 8th of December, 2010, at 2 pm. Publications of the Institute for Asian and African Studies 11 ISBN 978-952-10-6679-5 (printed) ISBN 978-952-10-6680-1 (PDF) http://ethesis.helsinki.fi/ ISSN 1458-5359 Helsinki University Print Helsinki 2010 AKNOWLEDGEMENTS This doctoral dissertation is like a journey that began in 1986 with my first visit to China. I have witnessed how China has changed from being a poor country to one of the most powerful economies in the world. With my academic endeavors I have deepened my knowledge about its history, culture, language, and governance. Completing this dissertation would have been impossible without the support of academic colleagues, friends and family. I sincerely thank Professor Juha Janhunen, at the Department of World Cultures, Asian and African Studies at the University of Helsinki, for his valuable feedback and suggestions. I am also thankful for being a participant in the “Ethnic Interaction and Adaptation in Amdo Qinghai” project supported by the Academy of Finland and headed by Professor Janhunen. I express my gratitude to my supervisors Professor Kauko Laitinen at the Confucius Institute of Helsinki University for his advice and encouragement throughout the study process. Professor Lim Hua Sing at Waseda University in Japan provided me perspectives for developing the methodology for my PhD, thus greatly assisting my work in the preliminary phase. -
Research on Tibetan Teachers' Attitude Towards Inclusive Education
PALACKÝ UNIVERSITY OLOMOUC Faculty of Education Institute of Special Education Studies Postgradual study programme: 75-06-V 002 Special Education Research on Tibetan Teachers’ Attitude towards Inclusive Education By Yu ZHOU, ME.d PhD study programme - Special Education Studies Supervisor Prof. PhDr. PaedDr. Miloň Potměšil, Ph.D. Olomouc, Czech Republic 2015 Declaration of Originality I, Yu ZHOU (Student number 80032169) declare that this dissertation entitled “Research on Tibetan Teachers’ Attitude towards Inclusive Education” and submitted as partial requirement for Ph.D. study programme of Special Education is my original work and that all the sources in any form (e.g. ideas, figures, texts, tables, etc.) that I have used or quoted have been indicated and acknowledged in the text as well as in the list of reference. __________________ __________________ Signature Date I Acknowledgements It is incredible to image that, have I achieved a Dr Monograph? Yes, I really made it right now!—therefore, I became the first person to get a Ph.D in my family history so that is sufficient to make my family and me proud. At the moment, I‘d like to this paper for myself who turns 37 next month as a perfect birthday present. It stands to reason that, I made an ideal blend of major and personal interest under the guidance of my supervisor Prof. PhDr. PaedDr. Miloň Potměšil, Ph.D., that my research can be completed successfully. I still have a cherished hand drawing which concerns about the Lhasa of Tibet and the Danba by him whom painted it face to face in his office originally. -
A Review of High Arsenic Groundwater in Mainland and Taiwan, China
Applied Geochemistry 41 (2014) 196–217 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Review A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes ⇑ Huaming Guo a,b, , Dongguang Wen c, Zeyun Liu b, Yongfeng Jia a,b, Qi Guo a,b a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China b School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China c China Geological Survey, 24 Huangsi Dajie, Xicheng District, Beijing 100037, PR China article info abstract Article history: China is a typical high-As region, where 20 provinces have high As groundwaters among 34 provinces. Received 15 October 2013 These groundwaters usually occur in both arid–semiarid inland basins and river deltas. In the inland Accepted 23 December 2013 basins, mainly distributed in the northwest of China, shallow groundwaters usually have high As concen- Available online 28 December 2013 trations in alluvial lacustrine or lacustrine sediment aquifers, while high As groundwater mainly occurs in Editorial handling by M. Kersten fluvial–marine sedimentary aquifers in the river deltas, which have been affected by transgression. In both the inland basins and the river deltas, high As groundwaters, mainly occurring in reducing condi- À tions, are characterized by high Fe and Mn concentrations, high pH and HCO3 concentration, and rela- À 2À tively low NO3 and SO4 concentrations. Although As contents are well correlated to Fe/Mn contents in the aquifer sediments, groundwater As concentrations are generally independent of sediment As con- tents. -
Spatially Variable Provenance of the Chinese Loess Plateau
https://doi.org/10.1130/G48867.1 Manuscript received 26 January 2021 Revised manuscript received 19 March 2021 Manuscript accepted 12 April 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Spatially variable provenance of the Chinese Loess Plateau Haobo Zhang1, Junsheng Nie1,2*, Xiangjun Liu3*, Alex Pullen4, Guoqiang Li1, Wenbin Peng5 and Hanzhi Zhang6 1 Key Laboratory of Western China’s Environment Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 2 Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China 3 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China 4 Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, USA 5 School of Tourism and Resource Environment, Zaozhuang University, Zaozhuang 277160, China 6 School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China ABSTRACT although wind sorting can potentially invalidate Loess sequences of the Chinese Loess Plateau (CLP) compose one of the most complete this application. Alternatively, spatial heteroge- Neogene–Quaternary terrestrial paleoclimatic archives. Understanding the CLP’s sediment neity of provenance (Bird et al., 2015; Shang sources is critical to tracing Asian aridification, atmospheric circulation patterns, and Asian et al., 2016) implies that paleoclimate proxies monsoon evolution. Commonly, the sediments that compose the Quaternary strata of the across the CLP may be more locally unique CLP are considered largely homogeneous, and thus numerous studies have applied a uniform than previously thought, thus undermining their source model when attempting to use CLP-derived proxies as paleoclimate indicators.