Hybridization Between Castilleja Levisecta and C. Hispida: Implications for Pacific Northwest Prairie Management

Total Page:16

File Type:pdf, Size:1020Kb

Hybridization Between Castilleja Levisecta and C. Hispida: Implications for Pacific Northwest Prairie Management AN ABSTRACT OF THE THESIS OF Isaac Jerome Sandlin III for the degree of Master of Science in Botany and Plant Pathology presented on March 15, 2018. Title: Hybridization between Castilleja levisecta and C. hispida: Implications for Pacific Northwest Prairie Management Abstract approved: ______________________________________________________ Thomas N. Kaye Conservation conflicts may develop on restoration sites with multiple species recovery objectives. For example, on Pacific Northwest prairies, the co-planting of the diploid cytotype of the common native wildflower Castilleja hispida with the endangered wildflower C. levisecta has resulted in putative Castilleja hybrids on restoration sites, prompting fears that genetic swamping could threaten C. levisecta. Because C. hispida is a larval host for the endangered Taylor’s checkerspot butterfly (Euphydryas editha taylori), this situation puts the recovery of both of these species at risk. However, hybrid fertility in this system is unknown. To assess hybrid fertility and introgression in Castilleja hybrids, we conducted a series of controlled reciprocal crosses between C. levisecta and C. hispida, and backcrosses between F1 hybrids and their progenitors. We measured the resulting fruit set, seed set, and seed germination to look at post pollination barriers to reproduction. Because populations of C. hispida can be diploid (2n = 2x = 24), tetraploid (2n = 4x = 48), or hexaploid (2n = 6x = 72), and C. levisecta is only diploid (2n = 2x = 24), this project explores mixed ploidy crosses between the two species. Reproductive isolation from C. levisecta was between 32 – 61% in crosses between C. levisecta and diploid C. hispida, 89 – 100% in C. levisecta and tetraploid C. hispida crosses, and 98 – 99% in C. levisecta and hexaploid C. hispida crosses. Reproductive isolation from C. levisecta was between -22 – 0% in backcrosses between C. levisecta and diploid F1 hybrids, suggesting higher diploid hybrid fitness. Reproductive isolation from C. levisecta was between 99 – 100% in backcrosses between C. levisecta and triploid F1 hybrids, suggesting interploidy crosses act as a barrier to gene flow. In addition, in order to prevent introgression, the eradication of putative hybrids is critically important to the conservation of the C. levisecta genome, but hybrids can appear extremely morphologically close to either parental species, or highly distinct. Because ploidy differences between two interspecific mating partners can be a potent isolation mechanism in plants, land managers might choose to co-plant a polyploid C. hispida cytotype with C. levisecta at recovery sites in order to mitigate hybridization between these two species, but little morphological data exists on C. hispida cytotypes. To better identify hybrids and C. hispida polyploids, we looked at whether measurable differences are detectable in 15 bract, calyx, and floral characteristics of C. levisecta, three cytotypes of C. hispida, and their diploid F1 hybrids, and if so, whether those differences are distinct enough for field technicians to distinguish them. Using multivariate analyses and univariate ANOVA, we found groups of traits that distinguished between hybrids and their progenitors, and C. hispida cytotypes, that could prove useful for field biologists. ©Copyright by Isaac Jerome Sandlin III March 15, 2018 All Rights Reserved Hybridization between Castilleja levisecta and C. hispida: Implications for Pacific Northwest Prairie Management by Isaac Jerome Sandlin III A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented March 15, 2018 Commencement June 2018 Master of Science thesis of Isaac Jerome Sandlin III presented on March 15, 2018 APPROVED: Major Professor, representing Botany and Plant Pathology Head of the Department of Botany and Plant Pathology Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Isaac Jerome Sandlin III, Author ACKNOWLEDGEMENTS I would first like to thank our many collaborators in this project: Peter Dunwiddie, Sierra Smith and the staff of the Center for Natural Lands Management in Olympia, WA for general guidance, help, and sourcing and collecting seeds for the C. hispida parent generation; Jeremy Fant, Kay Havens, Pattie Vitt, Andrea Kramer, and the Plant Science and Conservation Staff at the Chicago Botanic Gardens for guidance and help; Amy Bartow and the staff of the USDA NRCS Plant Materials Center, Corvallis, OR for teaching me how to grow Castilleja; Sean Logan, Gloria O’Brian, James Ervin, and the staff at the Oregon State University greenhouses for keeping my plants warm, happy, and pest free; Ryan Contreras and the good folks at the Contreras Lab for access to and guidance with flow cytometry; and Dale Brown and the staff of the OSU Seed Lab for cold stratification and germination resources, and all other seed-related knowledge and know-how. So many people have provided personal and professional help, assistance, and inspiration to me over the course of this project. Foremost, I’d like to thank my father, Jerry Sandlin, for providing many, many years of support and patience while I pursued a “sorta funny” profession in botany (he’s an engineer...); Caitlin Lawrence and Andrew Esterson for watering my plants, and being great friends; Sarai Carter for being my closest friend and confidant during the hardest times, and helping me count so many seedlings; Danielle Agular, Christina Partipilo, and Camille Eckel for helping with plant care and counting seeds; and all of my fellow graduate students at the Department of Botany and Plant Pathology at OSU, I couldn’t have done this without their support. The opportunity for me to study botany at OSU simply would not have been possible without serious help from colleagues and mentors: Dr. Johnny Randall and the staff at the North Carolina Botanical Garden, who gave me my first job out of university and taught me all about plant conservation; Dr. Ed Guerrant, director of the Rea Selling Berry Seed Bank & Plant Conservation Program, who convinced me that I was indeed cut out for graduate school (and introduced me to my future major professor); and, of course, Dr. Tom Kaye, executive director of the Institute for Applied Ecology, my major professor, and my mentor of many years, who has provided me with endless opportunities. Finally, this thesis is dedicated to TLH, my heart… TABLE OF CONTENTS Page Chapter 1: Introduction ................................................................................................................... 1 Pacific Northwest Prairies .......................................................................................................................... 2 Taylor’s Checkerspot Butterfly .................................................................................................................. 3 The Castilleja System ................................................................................................................................ 4 Research Goals and Objectives .................................................................................................................. 5 Literature Cited .......................................................................................................................................... 6 Chapter 2: Hybridization between Castilleja levisecta and C. hispida: Implications for Rare Plant and Butterfly Management ............................................................................................................. 9 Abstract .................................................................................................................................................... 10 Introduction .............................................................................................................................................. 11 Materials and Methods ............................................................................................................................. 16 PARENT PLANT MATERIAL ............................................................................................. 16 PLOIDY and GENOME SIZING .......................................................................................... 17 SEED GERMINATION ......................................................................................................... 18 GREENHOUSE CULTURE .................................................................................................. 19 CREATION OF F1 HYBRIDS .............................................................................................. 19 ASSESSMENT OF F1 HYBIRD FERTILITY ..................................................................... 21 FITNESS MEASURES .......................................................................................................... 22 Results ...................................................................................................................................................... 27 PLOIDY DIFFERENCES ...................................................................................................... 27 FRUIT SET, SEED SET, and SEED GERMINATION ........................................................ 28 REPRODUCTIVE ISOLATION BETWEEN C. LEVISECTA and F2 HYBRIDS ............... 34 Discussion ...............................................................................................................................................
Recommended publications
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Christ's Indian Paintbrush (Castilleja Christii) Monitoring on the Sawtooth
    CHRIST’S INDIAN PAINTBRUSH (CASTILLEJA CHRISTII) MONITORING ON THE SAWTOOTH NATIONAL FOREST: SECOND-YEAR RESULTS by Robert K. Moseley Conservation Data Center March 1997 Idaho Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, ID 83707 Stephen P. Mealey, Director Sawtooth National Forest Idaho Department of Fish and Game Agreement No. 14-CCS-96-023 ABSTRACT Christ’s Indian paintbrush (Castilleja christii) is Idaho’s rarest plant, consisting of a single population on Mount Harrison at the north end of the Albion Mountains, Cassia County. Due to its extreme rarity and the numerous disturbances that take place on the summit plateau of Mount Harrison, a Conservation Agreement was signed between the Sawtooth National Forest and the U.S. Fish and Wildlife Service that enumerates conservation actions that will be implemented to protect habitat for Christ’s Indian paintbrush, including establishing a monitoring program to assess impacts to the population associated with recreational uses. The monitoring program was established by the Idaho Department of Fish and Game’s Conservation Data Center in 1995 (Moseley 1996). The objectives for 1996 were to: (1) continue to collect density and frequency data for Christ’s Indian paintbrush at the 20 transects established in 1995 and (2) establish monitoring of habitat recovery where a buried electronic cable was laid through a small portion of paintbrush habitat in late 1995. Results of the population monitoring show that the total number of plants and stems increased in 1996, but in only one transect was that increase statistically significant for plant density. Three transects showed significant increases in stem production.
    [Show full text]
  • Castilleja Coccinea and C. Indivisa (Orobanchaceae)
    Nesom, G.L. and J.M. Egger. 2014. Castilleja coccinea and C. indivisa (Orobanchaceae). Phytoneuron 2014-14: 1–7. Published 6 January 2014. ISSN 2153 733X CASTILLEJA COCCINEA AND C. INDIVISA (OROBANCHACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com J. M ARK EGGER Herbarium, Burke Museum of Natural History and Culture University of Washington Seattle, Washington 98195-5325 [email protected] ABSTRACT Castilleja coccinea and C. indivisa are contrasted in morphology and their ranges mapped in detail in the southern USA, where they are natively sympatric in small areas of Oklahoma, Arkansas, and Louisiana. Castilleja indivisa has recently been introduced and naturalized in the floras of Alabama and Florida. Castilleja ludoviciana , known only by the type collection from southwestern Louisiana, differs from C. coccinea in subentire leaves and relatively small flowers and is perhaps a population introgressed by C. indivisa . Castilleja coccinea and C. indivisa are allopatric except in small areas of Oklahoma, Arkansas, and Lousiana, but assessments of their native distributions are not consistent among various accounts (e.g. Thomas & Allen 1997; Turner et al. 2003; OVPD 2012; USDA, NRCS 2013). Morphological contrasts between the two species, via keys in floristic treatments (e.g., Smith 1994; Wunderlin & Hansen 2003; Nelson 2009; Weakley 2012), have essentially repeated the differences outlined by Pennell (1935). The current study presents an evaluation and summary of the taxonomy of these two species. We have examined specimens at CAS, TEX-LL, SMU-BRIT-VDB, MO, NLU, NO, USF, WS, and WTU and viewed digital images available through Florida herbaria and databases.
    [Show full text]
  • Molecular Investigation of the Origin of Castilleja Crista-Galli by Sarah
    Molecular investigation of the origin of Castilleja crista-galli by Sarah Youngberg Mathews A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Montana State University © Copyright by Sarah Youngberg Mathews (1990) Abstract: An hypothesis of hybrid origin of Castilleja crista-galli (Scrophulariaceae) was studied. Hybridization and polyploidy are widespread in Castilleja and are often invoked as a cause of difficulty in defining species and as a speciation model. The putative allopolyploid origin of Castilleja crista-gralli from Castilleja miniata and Castilleja linariifolia was investigated using molecular, morphological and cytological techniques. Restriction site analysis of chloroplast DNA revealed high homogeneity among the chloroplast genomes of species of Castilleja and two Orthocarpus. No species of Castilleia represented by more than one population in the analysis was characterized by a distinctive choroplast genome. Genetic distances estimated from restriction site mutations between any two species or between genera are comparable to distances reported from other plant groups, but both intraspecific and intrapopulational distances are high relative to other groups. Restriction site analysis of nuclear ribosomal DNA revealed variable repeat types both within and among individuals. Qualitative species groupings based on restriction site mutations in the ribosomal DNA repeat units do not place Castilleja crista-galli with either putative parent in a consistent manner. A cladistic analysis of 11 taxa using 10 morphological characters places Castilleja crista-galli in an unresolved polytomy with both putative parents and Castilleja hispida. Cytological analyses indicate that Castilleja crista-gralli is not of simple allopolyploid origin. Both diploid and tetraploid chromosome counts are reported for this species, previously known only as an octoploid.
    [Show full text]
  • The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems
    Pursuit - The Journal of Undergraduate Research at The University of Tennessee Volume 3 Issue 2 Spring 2012 Article 8 March 2012 The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems Johannah Reed University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/pursuit Recommended Citation Reed, Johannah (2012) "The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems," Pursuit - The Journal of Undergraduate Research at The University of Tennessee: Vol. 3 : Iss. 2 , Article 8. Available at: https://trace.tennessee.edu/pursuit/vol3/iss2/8 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Pursuit - The Journal of Undergraduate Research at The University of Tennessee by an authorized editor. For more information, please visit https://trace.tennessee.edu/pursuit. Pursuit: The Journal of Undergraduate Research at the University of Tennessee Copyright © The University of Tennessee The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems JOHANNAH REED Advisor: Nate Sanders Environmental Studies, University of Tennessee, Knoxville There is a long history in ecology of examining how interactions such as competition, predation, and mutualism influence the structure and dynamics of natural communities. However, few studies to date have experimentally as- sessed the role of hemiparasitic plants as a structuring force. Hemiparasitic plants have the potential to shape plant communities because of their ability to photosynthesize and parasitize and because of their abundance in a variety of natural and managed ecosystems.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • CV November 2011
    David C. Tank College of Natural Resources & Stillinger Herbarium, University of Idaho, Moscow, ID Tel: 208.885.7033 [email protected] http://phylodiversity.net/dtank/ ACADEMIC EMPLOYMENT Assistant Professor & Director, Stillinger Herbarium July 2008-present College of Natural Resources Affiliated faculty, Environmental Sciences University of Idaho, Moscow, ID Postdoctoral Associate 2006-2008 Division of Botany, Peabody Museum of Natural History Yale University, New Haven, CT Supervisor: Dr. Michael Donoghue Interim Collections Manager 2007 Division of Botany, Peabody Museum of Natural History Yale University, New Haven, CT Lecturer 2007 Department of Ecology & Evolutionary Biology Yale University, New Haven, CT EDUCATION Ph.D., Botany 2006 University of Washington, Seattle, WA Advisor: Dr. Richard Olmstead dissertation - Molecular phylogenetics of Castilleja and Castillejinae (Orobanchaceae) M.S., Botany & Plant Pathology; Specialization in Ecology, Evolutionary Biology & Behavior 2000 Michigan State University, East Lansing, MI Advisor: Dr. Tao Sang thesis - Evolution and phylogenetic utility of low-copy nuclear genes: examples from conifers and peonies B.S., Botany & Plant Pathology; with honors, summa cum laude 1998 Michigan State University, East Lansing, MI TEACHING EXPERIENCE Assistant Professor, University of Idaho 2008-present Dendrology (2008-2011; undergraduate lecture/lab), Field Botany (2011; undergraduate short course), Conser- vation Genetics (2010; graduate lecture/lab; team taught with L. Waits), Phylogenetics Reading Group
    [Show full text]
  • TAXONOMY Plant Family Species Scientific Name
    CAEL7 1 Plant Propagation Protocol for Castilleja elmeri ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/[USDASpeciesCode.pdf] Castilleja elmeri, Wenatchee Indian paintbrush (Source: Walter Siegmund1) TAXONOMY Plant Family Scientific Name Scrophulariaceae Common Name Figwort family Species Scientific Name Scientific Name Castilleja elmeri (Fernald) Varieties N/A Sub-species N/A Cultivar N/A Common Synonym(s) Castilleja angustifolia (G. Don) var. whitedii Piper2 Common Name(s) Wenatchee Indian paintbrush3, Elmer’s paintbrush2 Species Code (as per USDA CAEL7 Plants database) CAEL7 2 GENERAL INFORMATION Geographical range North America Distribution Washington State Distribution Source: USDA Plants Database3 Wenatchee Mountains and the east slope of the Cascades, Kittitas County, Washington; north into British Columbia2 Ecological distribution Moist, open slopes at mid-elevations in the mountains2 Climate and elevation range Mid-elevation4 Local habitat and abundance Found near sedges and fescues, commonly using them as hosts for hemi-parasitic roots5 Plant strategy type / Hemi-parasitic5 (capable of manufacturing their own food and successional stage obtaining water/ nutrients from soil, but also form specialized roots—haustoria roots—that attach to a host plant to take up additional water); herb3 CAEL7 3 Plant characteristics Perennial species; blooms June-August2; some reports that Castilleja seed is difficult to germinate and that chemical exudate from the roots of host species (Castilleja are parasitic) are needed to induce germination, however this pattern is not always observed6; pollinated by insects and hummingbirds5 PROPAGATION DETAILS Ecotype N/A Propagation Goal Plants Propagation Method Seed Product Type Container (plug) Stock Type N/A Time to Grow 16 weeks5 Target Specifications Hardened 16-wk-old plants Propagule Collection Seeds can be collected in midsummer for early spring flowering Instructions species and in late summer for mid-elevation species.
    [Show full text]
  • The Vascular Flora of Boone County, Iowa (2005-2008)
    Journal of the Iowa Academy of Science: JIAS Volume 117 Number 1-4 Article 5 2010 The Vascular Flora of Boone County, Iowa (2005-2008) Jimmie D. Thompson Let us know how access to this document benefits ouy Copyright © Copyright 2011 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Thompson, Jimmie D. (2010) "The Vascular Flora of Boone County, Iowa (2005-2008)," Journal of the Iowa Academy of Science: JIAS, 117(1-4), 9-46. Available at: https://scholarworks.uni.edu/jias/vol117/iss1/5 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 117(1-4):9-46, 2010 The Vascular Flora of Boone County, Iowa (2005-2008) JIMMIE D. THOMPSON 19516 515'h Ave. Ames, Iowa 50014-9302 A vascular plant survey of Boone County, Iowa was conducted from 2005 to 2008 during which 1016 taxa (of which 761, or 75%, are native to central Iowa) were encountered (vouchered and/or observed). A search of literature and the vouchers of Iowa State University's Ada Hayden Herbarium (ISC) revealed 82 additional taxa (of which 57, or 70%, are native to Iowa), unvouchered or unobserved during the current study, as having occurred in the county.
    [Show full text]
  • A Comparative Study of the Floras of China and Canada
    Núm. 24, pp. 25-51, ISSN 1405-2768; México, 2007 A COMPARATIVE STUDY OF THE FLORAS OF CHINA AND CANADA Zhiyao Su College of Forestry, South China Agricultural University, Guangzhou 510642 - P. R. China J. Hugo Cota-Sánchez Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 - Canada E-mail: [email protected] ABSTRACT at the generic and specific levels that are correlated with more recent geological and In this study, we investigated the floristic climatic variations and ecoenvironment relationships between China and Canada diversity, resulting in differences in floristic based on comparative analysis of their composition. Overall, western and eastern spermatophyte floras. Floristic lists were Canada have a similar number of shared compiled from standard floras and then genera, which suggests multiple migration subjected to cluster analysis using UPGMA events of floristic elements via the Atlantic and NMS ordination methods. Our data and Pacific connections and corridors that demonstrate that the Chinese spermatophyte existed in past geological times. flora is considerably more diverse than that of Canada and that the taxonomic richness Keywords: China, Canada, floristic rela- of seed plants in the floras of China and tionships, taxonomic richness, shared taxa, Canada shows significant variation at the intercontinental disjunction. specific and generic levels. China contains 272 families, 3 318 genera, and 27 078 RESUMEN species (after taxonomic standardization), whereas the spermatophyte flora of Canada En este estudio se investigaron la relaciones includes 145 families, 947 genera, and florísticas entre Canadá y China basados 4 616 species. The results indicate that out en análisis comparativos de las floras de of 553 genera shared by the Chinese and espermatofitas de ambos países.
    [Show full text]
  • Indian Paintbrush CASTILLEJA SPECIES
    PROPAGATION PROTOCOL FOR Indian Paintbrush CASTILLEJA SPECIES | Tara Luna 62 NATIVEPLANTS | SPRING 2005 Indian paintbrush (Castilleja spp. Michx. [Scrophulariaceae]) is a vibrant, beautiful genus of annual, biennial, and perennial wildflowers that are found exclusively in North America. The majority of species grow in the West, but a few species occur in the central portion of the US. There are more than 150 species and many freely hybridize with one another in areas where their ranges overlap. They are found in a wide range of habitats, ranging from low elevation wetlands and riparian areas to dry grasslands, steppe-shrub communities, and rocky slopes to mid- to high eleva- tion mountain meadows and slopes. The inflorescence is a short or elongate terminal spike bearing tubular-shaped Iflowers that are subtended by numerous colorful bracts. Indian paintbrush is appro- priately named as the bracts graduate in color from green leafy stems to the brightly colored tops of the inflorescence, thus giving the appearance that the tops of the plants have been dipped in paint. Both insects and hummingbirds are attracted to these plants and serve as pollinators. The flower and bract color, even within a single species, can range wildly across the color palette from rich reds, scarlet, and fuchsia to orange, salmon, pink, yellow, and cream. It is not unusual to find a single flower with up to 3 contrasting colors on the showy bracts. Because the floral bracts make up most of the color, they tend to remain showy for several weeks through the growing season. The rich, brilliant, pro- longed color of these species is one reason why they are some of the most desired native species for the home landscape, yet they are not widely available for sale as container plants because of their interesting biology.
    [Show full text]
  • COSEWIC Assessment and Status Report on the Victoria Owl-Clover In
    COSEWIC Assessment and Status Report on the Victoria’s Owl-clover Castilleja victoriae in Canada ENDANGERED 2010 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2010. COSEWIC assessment and status report on the Victoria’s Owl-clover Castilleja victoriae in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 20 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Matt Fairbarns for writing the status report on the Victoria’s Owl- clover, Castilleja victoriae, in Canada. COSEWIC also gratefully acknowledges the financial support of the BC Conservation Data Centre and Parks Canada for the preparation of this report. The COSEWIC report review was overseen by Erich Haber, Co-chair, COSEWIC Vascular Plants Species Specialist Subcommittee, with input from members of COSEWIC. That review may have resulted in changes and additions to the initial version of the report. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le castilléjie de Victoria (Castilleja victoriae) au Canada. Cover illustration/photo: Victoria’s Owl-clover — Photo by Matt Fairbarns. ©Her Majesty the Queen in Right of Canada, 2010. Catalogue CW69-14/610-2010E-PDF ISBN 978-1-100-16058-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – April 2010 Common name Victoria’s Owl-clover Scientific name Castilleja victoriae Status Endangered Reason for designation This small annual herb is confined to a very small area of British Columbia and one site in adjacent Washington State.
    [Show full text]