Phylogenetic Systematics and the Evolutionary History of Some Intestinal Flatworm Parasites (Trematoda: Digenea: Plagiorchi01dea) of Anurans

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Systematics and the Evolutionary History of Some Intestinal Flatworm Parasites (Trematoda: Digenea: Plagiorchi01dea) of Anurans PHYLOGENETIC SYSTEMATICS AND THE EVOLUTIONARY HISTORY OF SOME INTESTINAL FLATWORM PARASITES (TREMATODA: DIGENEA: PLAGIORCHI01DEA) OF ANURANS by RICHARD TERENCE 0'GRADY B.Sc, University Of British Columbia, 1978 M.Sc, McGill University, 1981 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department Of Zoology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1987 © Richard Terence O'Grady, 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Zoology The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: March 24, 1987 i i Abstract Historical structuralism is presented as a research program in evolutionary biology. It uses patterns of common ancestry as initial hypotheses in explaining evolutionary history. Such patterns, represented by phylogenetic trees, or cladograms, are postulates of persistent ancestral traits. These traits are evidence of historical constraints on evolutionary change. Patterns and processes consistent with a cladogram are considered to be consistent with an initial hypothesis of historical constraint. As an application of historical structuralism, a phylogenetic analysis is presented for members of the digenean plagiorchioid genera Glypthelmins Stafford, 1905 and Haplometrana Lucker, 1931. The eight species studied are intestinal parasites of frogs and toads in North, Central, and South America. In a Wagner parsimony analysis of 21 morphological characters with both the PAUP and PHYSYS computer programs, a single phylogenetic tree with a consistency index of 84.8% can be inferred. This suggests strong historical constraint in the evolution of the characters examined. It is postulated that the eight species form a monophyletic group (clade), consisting of two less inclusive clades. Glypthelmins hyloreus and G. pennsylvaniensis comprise one of these clades; G. robustus, G. shastai, H. intestinalis, G. californiensis, G. quieta, and G. facioi comprise the other. G. robustus, found in Bufo marinus in Colombia, is both the southernmost and the most plesiomorphic member of its clade. Glypthelmins californiensis, G. quieta, and G. facioi form a clade, and parasitize frogs in the Rana pipiens complex in Mexico, eastern North America, and Central America, respectively. Glypthelmins shastai and H. intestinalis, the latter of which is the only member of its genus, form a western North American clade, and parasitize Bufo boreas and Rana pretiosa, respectively. The phylogenetic analysis includes a redescription of G. shastai, the synonymy of the genus Haplometrana with Glypthelmins, the redescription of H. intest inali s as G. intestinalis, an emended diagnosis of the genus Glypthelmins, and the first account of the life cycle of G. californiensis. Three aspects of phylogenetic analysis are examined in detail. These are the coding of multistate character trees, the use of parasite data to infer host relationships, and the properties of the Consistency Index and the F-Ratio. It is proposed that the Consistency Index be calculated without non-homoplasious autapomorphic characters. For the present study, this modification gives a value of 76.9%. Using the phylogenetic tree as a general reference system of patterns of common ancestry, it is inferred from developmental studies that (1) there is no conflict between the phylogenetic relationships indicated by only larval or only adult characters, and that (2) the evolution of some of the characters involved certain types of heterochrony. Paedomorphic heterochrony is inferred to have occurred in the evolution of the uterus in G. shastai, H. intestinalis, G. californiensis, G. quieta, and G. facioi. Peramorphic heterochrony is inferred i v to have occurred in the evolution of the penetration glands in G. facioi, and of the hindbody in H. intestinalis. The relatively longer hindbody of H. intestinalis was experimentally induced to show paedomcrphic development by raising specimens of H. intestinalis in Bufo boreas, which is the host of G. shastai, its sister-species. By one year after infection, the relative length of the hindbody is shorter, and is equal to that of the primitive state found in G. shastai. The phylogenetic relationships among the anuran hosts are re-analyzed. There is 80% congruence between them and the postulated phylogenetic tree for their parasites, suggesting strong historical association between the parasite and host groups. This inference of coevolution is further supported by the concordance of the present geographical distributions of the parasites and their hosts with the historical geology of the areas in which they occur. This implies an historical association between the areas and the organisms. V Table of Contents Abstract ii List of Tables viii List of Figures ix Acknowledgements xiii Chapter I INTRODUCTION 1 Chapter II HISTORICAL STRUCTURALISM AS A RESEARCH PROGRAM IN EVOLUTIONARY BIOLOGY 7 BIOLOGICAL SYSTEMS 8 END-ATTAINING ACTIVITY 10 HISTORICAL AND NONHISTORICAL APPROACHES IN BIOLOGY .17 NATURAL SELECTION 21 ADAPTATION 25 A SINGLE EXPLANATORY FRAMEWORK 28 1. INTRASPECIFIC INVESTIGATIONS 30 2. PHYLOGENETIC INVESTIGATIONS 31 3. LIFE HISTORY INVESTIGATIONS 33 4. COMMUNITY STRUCTURE INVESTIGATIONS 36 "WHY" QUESTIONS 37 SUMMARY 38 CONCLUSIONS 41 Chapter III PHYLOGENETIC ANALYSIS OF HAPLOMETRANA LUCKER, 1931 AND SPECIES OF GLYPTHELMINS STAFFORD, 1905 (DIGENEA: PLAGIORCHI01DEA) IN NORTH, CENTRAL, AND SOUTH AMERICA 42 INTRODUCTION 42 TAXA STUDIED 4 5 MATERIALS AND METHODS 47 SPECIMENS EXAMINED 47 1. MUSEUM SPECIMENS 47 2. FIELD COLLECTIONS 52 3. EXAMINATION OF SPECIMENS 53 THE INFERENCE OF PHYLOGENETIC RELATIONSHIPS 54 1 . HOMOLOGY 54 2. OUTGROUPS 57 3. MULTISTATE CHARACTERS 59 4. COMPUTER-ASSISTED PARSIMONY ANALYSIS 60 CHARACTER ANALYSIS 63 1. CHARACTERS EXCLUDED FROM ANALYSIS 84 RESULTS AND DISCUSSION 87 PHYLOGENETIC ANALYSIS 87 TAXONOMIC CONSIDERATIONS 91 Chapter IV USING THE PHYLOGENETIC TREE TO STUDY EVOLUTIONARY EVENTS .94 PHYLOGENETIC CONCORDANCE OF LARVAL AND ADULT CHARACTERS 95 INTRODUCTION 95 LIFE HISTORY DATA 100 1. PREVIOUS STUDIES , 101 2. NEW DATA 103 .ANALYSIS OF LARVAL CHARACTERS 107 ANALYSIS OF LIFE CYCLE EVOLUTION 108 HETEROCHRONIC DEVELOPMENT 109 INTRODUCTION 109 ANALYSIS 114 ALLOMETRY AS HETEROCHRONY 118 EXPERIMENTALLY-PRODUCED HETEROCHRONY IN HAPLOMETRANA INTESTINALIS 121 INTRODUCTION 121 ANALYSIS 121 DISCUSSION 124 COEVOLUTION AND BIOGEOGRAPHY OF PARASITES AND HOSTS ..126 INTRODUCTION 126 HOST AND DISTRIBUTION DATA 128 1 . PREVIOUS STUDIES , 128 2. NEW DATA 134 3. DISCUSSION 140 COEVOLUTION ANALYSIS 142 1. FAMILY LEVEL 1 42 2. SPECIES LEVEL 144 BIOGEOGRAPHIC ANALYSIS 152 SUMMARY 156 LITERATURE CITED 275 APPENDIX A - COMPUTER ANALYSES WITH PAUP AND PHYSYS 292 APPENDIX B - HOST AND DISTRIBUTION DATA FOR GLYPTHELMINS QUIETA 303 APPENDIX C - COLLECTION SITES OF ANURANS 306 APPENDIX D - REDESCRIPTION OF GLYPTHELMINS SHASTAI, SYNONYMIZATION OF HAPLOMETRANA WITH GLYPTHELMINS, AND REDESCRIPTION OF G. INTESTINALIS N. COMB 307 APPENDIX E - THE LIFE CYCLE OF GLYPTHELMINS CALIFORNIENSIS 313 vii APPENDIX F - CODING MULTISTATE CHARACTERS 318 APPENDIX G - SOME PROPERTIES OF THE CONSISTENCY INDEX AND THE F-RATIO 327 viii List of Tables I. SPECIES STUDIED ....46 II. CHARACTERS ANALYZED 85 III. CHARACTERS RENUMBERED FROM UNORDERED ANALYSIS 90 ix List of Figures 1. End-Attaining Activity in Biological Systems .159 2. Ultimate and Proximate Causality 159 3. Types of Evolutionary Explanations 161 4. Historical Structuralism in Phylogenetic Systematics 161 5. Using a Cladogram to Study the Evolution of Life History Traits 163 6. The Application of Historical Structuralism to the Study of Community Structure 165 7. Postulated Relationships among Glypthelmins, from Brooks (1977) 167 8. Collection Sites of Anurans in British Columbia 169 9. Collections Sites of Anurans in California 171 10. Tegumental Projections 173 11. Penetration Glands in Adult Glypthelmins facioi 173 12. Medial Glands in Haplometrana intestinalis 175 13. Pharyngeal Glands in Glypthelmins quieta 175 14. Schematic Representation of the Distribution of the Vitellaria in Glypthelmins and Haplometrana 177 15. Distribution of Vitellaria in Glypthelmins quieta and G. facioi 179 16. Distribution of Vitellaria in Glypthelmins californiensis 181 17. Distribution of Vitellaria in Glypthelmins shastai and Haplometrana intestinalis 181 18. Vitelline Ducts in Haplometrana intestinalis and Glypthelmins californiensis 183 19. Shape of the Excretory Vesicle 185 20. Postulated Phylogenetic Relationships among Glypthelmins and Haplometrana 187 X 21. Multistate Character Trees: One 189 22. Multistate Character Trees: Two 191 23. Disruptive Grouping Criteria in Systematics 193 24. Congruence and Consistency in Tree Topologies 195 25. Generalized Life Cycle of a Digenean Flatworm 197 26. Phylogenetic Analysis of Larval Characters of Species of Glypthelmins and Haplometrana 199 27. Phylogenetic Analysis of Life Cycle Evolution in Species of Glypthelmins and Haplometrana
Recommended publications
  • Chromosomal Evolution in Raphicerus Antelope Suggests Divergent X
    www.nature.com/scientificreports OPEN Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane’s rule Terence J. Robinson1*, Halina Cernohorska2, Svatava Kubickova2, Miluse Vozdova2, Petra Musilova2 & Aurora Ruiz‑Herrera3,4 Chromosome structural change has long been considered important in the evolution of post‑zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene fow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplifcation and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post‑ zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane’s rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network’s surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility. Te chromosomal speciation theory 1,2 also referred to as the “Hybrid dysfunction model”3, has been one of the most intriguing questions in biology for decades.
    [Show full text]
  • February 2011 ROBIN M. OVERSTREET Professor, Department of Coastal Sciences Gulf Coast Research Laboratory the University Of
    February 2011 ROBIN M. OVERSTREET Professor, Department of Coastal Sciences Gulf Coast Research Laboratory The University of Southern Mississippi 703 East Beach Drive Ocean Springs, MS 39564 (228) 872-4243 (Office)/(228) 282-4828 (cell)/(228) 872-4204 (Fax) E-mail: [email protected] Home: 13821 Paraiso Road Ocean Springs, MS 39564 (228) 875-7912 (Home) 1 June 1939 Eugene, Oregon Married: Kim B. Overstreet (1964); children: Brian R. (1970) and Eric T. (1973) Education : BA, General Biology, University of Oregon, Eugene, OR, 1963 MS, Marine Biology, University of Miami, Institute of Marine Sciences, Miami, FL, 1966 PhD, Marine Biology, University of Miami, Institute of Marine Sciences, Miami, FL, 1968 NIH Postdoctoral Fellow in Parasitology, Tulane Medical School, New Orleans, LA, 1968-1969 Professional Experience: Gulf Coast Research Laboratory, Parasitologist, 1969-1970; Head, Section of Parasitology, 1970-1992; Senior Research Scientist-Biologist, 1992-1998; Professor of Coastal Sciences at The University of Southern Mississippi, 1998-Present. The University of Southern Mississippi, Adjunct Member of Graduate Faculty, Department of Biological Sciences, 1970-1999; Adjunct 1 Member of Graduate Faculty, Center for Marine Science, 1992-1998; Professor of Coastal Sciences, 1998-Present (GCRL became part of USM). University of Mississippi, Adjunct Assistant Professor of Biology, 1 July 1971-31 December 1990; Adjunct Professor, 1 January 1991-Present. Louisiana State University, School of Veterinary Medicine, Affiliate Member of Graduate Faculty, 26 February, 1981-14 January 1987; Adjunct Professor of Aquatic Animal Disease, Associate Member, Department of Veterinary Microbiology and Parasitology, 15 January 1987-20 November 1992. University of Nebraska, Research Affiliate of the Harold W.
    [Show full text]
  • Gabriel Dover)
    Dear Mr Darwin (Gabriel Dover) Home | Intro | About | Feedback | Prev | Next | Search Steele: Lamarck's Was Signature Darwin Wrong? Molecular Drive: the Third Force in evolution Geneticist Gabriel Dover claims that there is a third force in evolution: 'Molecular Drive' beside natural selection and neutral drift. Molecular drive is operationally distinct from natural selection and neutral drift. According to Dover it explains biological phenomena, such as the 700 copies of a ribosomal RNA gene and the origin of the 173 legs of the centipede, which natural selection and neutral drift alone cannot explain. by Gert Korthof version 1.3 24 Mar 2001 Were Darwin and Mendel both wrong? Molecular Drive is, according to Dover, an important factor in evolution, because it shapes the genomes and forms of organisms. Therefore Neo-Darwinism is incomplete without Molecular Drive. It is no wonder that the spread of novel genes was ascribed to natural selection, because it was the only known process that could promote the spread of novel genes. Dover doesn't reject the existence of natural selection but points out cases where natural selection clearly fails as a mechanism. Molecular drive is a non-Darwinian mechanism because it is independent of selection. We certainly need forces in evolution, since natural selection itself is not a force. It is the passive outcome of other processes. It is not an active process, notwithstanding its name. Natural selection as an explanation is too powerful for its own good. Molecular drive is non-Mendelian because some DNA segments are multiplied disproportional. In Mendelian genetics genes are present in just two copies (one on the maternal and one on the paternal chromosome).
    [Show full text]
  • Molecular Evolution
    SYSTEMATICS & EVOLUTION Molecular Evolution GINCY C GEORGE (Assistant Professor On Contract) Molecular Evolution Molecular Evolution • Molecular evolution is the area of evolutionary biology that studies evolutionary change at the level of the DNA sequence. Molecular Evolution • It includes the study of rates of sequence change, relative importance of adaptive and neutral changes, and changes in genome structure. Molecular evolution examines DNA and proteins, addressing two types of questions: How do DNA and proteins evolve? How are genes and organisms evolutionarily related? Study of how genes and proteins evolve and how are organisms related based on their DNA sequence • Molecular evolution therefore is the determination and comparative study of DNA and deduced amino acid sequences. • Sequences from different organisms or populations are matched or aligned • Evolution at molecular level is observable at the base (nucleotide) level changes in the DNA and amino acid changes in proteins • Both can be studied by examining the differences between species • Both polymorphism and evolutionary changes between species can be explained by two processes ie; • Natural selection and Neutral drift • The main factors that influence Natural selection and Neutral drift are population size and the selection coefficient of the different genotypes • If the population is small and the selection coefficient low; genetic drift dominates, • Whereas natural selection dominates if the population and selection coefficients are large • Evolution of Modern species
    [Show full text]
  • Concerted Evolution at the Population Level: Pupfish Hindill Satellite DNA Sequences JOHN F
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 994-998, February 1994 Evolution Concerted evolution at the population level: Pupfish HindIll satellite DNA sequences JOHN F. ELDER, JR.* AND BRUCE J. TURNER Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Communicated by Bruce Wallace, October 18, 1993 ABSTRACT The canonical monomers (170 bp) of an organisms. There are very little data on their variation within abundant (1.9 x 10' copies per diploid genome) satellite DNA or divergence among conspecific natural populations. sequence family In the genome of Cyprinodon wriegau, a We report here sequence comparisons ofthe predominant "pph" that ranges along the Atlantic coast fom Cape Cod or "canonical" monomers of a satellite DNA array in sam- to central Mexico, are divergent in base sequence in 10 of 12 ples of 12 natural populations of Cyprinodon variegatus smle collected from natural populations. The divergence (Cyprinodontidae), a coastal killifish species. Ten of these Involves sbsitions, deletis, and insertions, is marked in samples have distinctive and characteristic canonical mono- scoe (mean pairwise sequence slarit = 61.6%; range = mers with high levels of intraindividual and intrapopulation 35-95.9%), Is largely ed to the 3' half of the monomer, homogeneity.t In other words, this satellite DNA has appar- and Is not correlated with the disace among cllg sites. ently undergone concerted evolution at or near the level of Repetitive loning and direct genomic sequencing expriments the local population. failed to detect intrapopulation and intraindividual variation, A preliminary account of some of our early findings has hig levels of sequence homogeneity within popu- appeared in a symposium volume (6).
    [Show full text]
  • Molecular Facts and Evolutionary Theory
    Journal and Proceedings of The Royal Society of New South Wales Volume 120 Parts 1 and 2 [Issued September, 1987] pp.39-48 Return to CONTENTS Molecular Facts and Evolutionary Theory George L. Gabor Miklos Evolutionary biology has had a fascinating recent history. It was realized more than a century ago that the way of approaching many evolutionary problems lay in studies of morphology. However, as pointed out by Bateson in 1922, “discussions of evolution came to an end primarily because no progress was being made. Morphology having been explored in the minutest corners, we turned elsewhere. We became geneticists in the conviction that there at least must evolutionary wisdom be found.” At the same time, while it was clear that morphology must have its bases in embryology, it was instead the mathematically oriented theory of neo-Darwinism that rose to prominence over the next half century. This theory is essentially an amalgam of Mendelian genetics and classical Darwinian selection, firmly based on changes in gene frequencies at particular loci. In the late 1960s, it began to be evaluated at a crude molecular level using gel electrophoresis techniques that allowed the examination of polymorphisms at many enzyme coding loci. In the mid 1970s the technological advances of genetic engineering ushered in an entirely new era of molecular biology. The molecular biologist became the successor to the pure geneticist, and the focus switched back to the molecular analysis of development. The molecular biology of recombinant DNA revolutionized the previous concepts of genome organization and function and led to a reappraisal of the importance of neo-Darwinism.
    [Show full text]
  • Parasitology Volume 60 60
    Advances in Parasitology Volume 60 60 Cover illustration: Echinobothrium elegans from the blue-spotted ribbontail ray (Taeniura lymma) in Australia, a 'classical' hypothesis of tapeworm evolution proposed 2005 by Prof. Emeritus L. Euzet in 1959, and the molecular sequence data that now represent the basis of contemporary phylogenetic investigation. The emergence of molecular systematics at the end of the twentieth century provided a new class of data with which to revisit hypotheses based on interpretations of morphology and life ADVANCES IN history. The result has been a mixture of corroboration, upheaval and considerable insight into the correspondence between genetic divergence and taxonomic circumscription. PARASITOLOGY ADVANCES IN ADVANCES Complete list of Contents: Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa T. Nozaki, V. Ali and M. Tokoro The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species M. J. Nolan and T. H. Cribb Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes P P. D. Olson and V. V. Tkach ARASITOLOGY Wolbachia Bacterial Endosymbionts of Filarial Nematodes M. J. Taylor, C. Bandi and A. Hoerauf The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination M. W. Shirley, A. L. Smith and F. M. Tomley 60 Edited by elsevier.com J.R. BAKER R. MULLER D. ROLLINSON Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes Peter D. Olson1 and Vasyl V. Tkach2 1Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA Abstract ...................................166 1.
    [Show full text]
  • Studies on the Trematode Parasites of Ducks In
    STUDIES ON THE TREMATODE PARASITES OF DUCKS IN MICHIGAN WITH SPECIAL REFERENCE TO THE MALLARD BY W. CARL GOWER A THESIS Presented to the Graduate School of Michigan State College of Agriculture and Applied Science in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy Department of Bacteriology, Hygiene, and Parasitology and Department of Zoology East Lansing, Michigan 1937 ProQuest Number: 10008314 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10008314 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 •Foreword and Acknowledgments This study was at first intended to be an intensive study of the species of Prosthogonimu3 occurring in south­ ern Michigan. Soon after beginning, however, it became apparent that, perhaps, a more important contribution might be made at this time through a survey of the trematodes found in ducks in Michigan. The obvious need for, and the excellent opportunity afforded at the W. K. Kellogg Bird Sanctuary for such a study, were instrumental in the change. Too, although Prosthogonimus is highly pathogenic in chickens, certain other trematodes seemed to be of more importance in ducks.
    [Show full text]
  • AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus Pentadactylus
    887.1 AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus pentadactylus Catalogue of American Amphibians and Reptiles. Heyer, M.M., W.R. Heyer, and R.O. de Sá. 2011. Leptodactylus pentadactylus . Leptodactylus pentadactylus (Laurenti) Smoky Jungle Frog Rana pentadactyla Laurenti 1768:32. Type-locality, “Indiis,” corrected to Suriname by Müller (1927: 276). Neotype, Nationaal Natuurhistorisch Mu- seum (RMNH) 29559, adult male, collector and date of collection unknown (examined by WRH). Rana gigas Spix 1824:25. Type-locality, “in locis palu - FIGURE 1. Leptodactylus pentadactylus , Brazil, Pará, Cacho- dosis fluminis Amazonum [Brazil]”. Holotype, Zoo- eira Juruá. Photograph courtesy of Laurie J. Vitt. logisches Sammlung des Bayerischen Staates (ZSM) 89/1921, now destroyed (Hoogmoed and Gruber 1983). See Nomenclatural History . Pre- lacustribus fluvii Amazonum [Brazil]”. Holotype, occupied by Rana gigas Wallbaum 1784 (= Rhin- ZSM 2502/0, now destroyed (Hoogmoed and ella marina {Linnaeus 1758}). Gruber 1983). Rana coriacea Spix 1824:29. Type-locality: “aquis Rana pachypus bilineata Mayer 1835:24. Type-local MAP . Distribution of Leptodactylus pentadactylus . The locality of the neotype is indicated by an open circle. A dot may rep - resent more than one site. Predicted distribution (dark-shaded) is modified from a BIOCLIM analysis. Published locality data used to generate the map should be considered as secondary sources, as we did not confirm identifications for all specimen localities. The locality coordinate data and sources are available on a spread sheet at http://learning.richmond.edu/ Leptodactylus. 887.2 FIGURE 2. Tadpole of Leptodactylus pentadactylus , USNM 576263, Brazil, Amazonas, Reserva Ducke. Scale bar = 5 mm. Type -locality, “Roque, Peru [06 o24’S, 76 o48’W].” Lectotype, Naturhistoriska Riksmuseet (NHMG) 497, age, sex, collector and date of collection un- known (not examined by authors).
    [Show full text]
  • Environmental Conservation Online System
    U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Lori Tolley-Jordan Prepared by: Lori Tolley-Jordan Project ID: Grant Agreement Award# F15AP00921 1 Report Date: April, 2017 U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Title: Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Principal Investigator: Lori Tolley-Jordan, Jacksonville State University, Jacksonville, AL. ______________________________________________________________________________ ABSTRACT The Wheeler National Wildlife Refuge (NWR) Complex includes: Wheeler, Sauta Cave, Fern Cave, Mountain Longleaf, Cahaba, and Watercress Darter Refuges that provide freshwater habitat for many rare, endangered, endemic, or migratory species of animals. To date, no systematic, baseline surveys of freshwater snails have been conducted in these refuges. Documenting the diversity of freshwater snails in this complex is important as many snails are the primary intermediate hosts of flatworm parasites (Trematoda: Digenea), whose infection in subsequent aquatic and terrestrial vertebrates may lead to their impaired health. In Fall 2015 and Summer 2016, snails were collected from a variety of aquatic habitats at all Refuges, except at Mountain Longleaf and Cahaba Refuges. All collected snails were transported live to the lab where they were identified to species and dissected to determine parasite presence. Trematode parasites infecting snails in the refuges were identified to the lowest taxonomic level by sequencing the DNA barcoding gene, 18s rDNA. Gene sequences from Refuge parasites were matched with published sequences of identified trematodes accessioned in the NCBI GenBank database.
    [Show full text]
  • PROCEEDINGS of the OKLAHOMA ACADEMY of SCIENCE Volume 98 2018
    PROCEEDINGS of the OKLAHOMA ACADEMY OF SCIENCE Volume 98 2018 EDITOR: Mostafa Elshahed Production Editor: Tammy Austin Business Manager: T. David Bass The Official Organ of the OKLAHOMA ACADEMY OF SCIENCE Which was established in 1909 for the purpose of stimulating scientific research; to promote fraternal relationships among those engaged in scientific work in Oklahoma; to diffuse among the citizens of the State a knowledge of the various departments of science; and to investigate and make known the material, educational, and other resources of the State. Affiliated with the American Association for the Advancement of Science. Publication Date: January 2019 ii POLICIES OF THE PROCEEDINGS The Proceedings of the Oklahoma Academy of Science contains papers on topics of interest to scientists. The goal is to publish clear communications of scientific findings and of matters of general concern for scientists in Oklahoma, and to serve as a creative outlet for other scientific contributions by scientists. ©2018 Oklahoma Academy of Science The Proceedings of the Oklahoma Academy Base and/or other appropriate repository. of Science contains reports that describe the Information necessary for retrieval of the results of original scientific investigation data from the repository will be specified in (including social science). Papers are received a reference in the paper. with the understanding that they have not been published previously or submitted for 4. Manuscripts that report research involving publication elsewhere. The papers should be human subjects or the use of materials of significant scientific quality, intelligible to a from human organs must be supported by broad scientific audience, and should represent a copy of the document authorizing the research conducted in accordance with accepted research and signed by the appropriate procedures and scientific ethics (proper subject official(s) of the institution where the work treatment and honesty).
    [Show full text]
  • Postmonorchis Sp. Inq.(Digenea: Monorchiidae) Metacercariae
    Vol. 106: 163–172, 2013 DISEASES OF AQUATIC ORGANISMS Published October 11 doi: 10.3354/dao02650 Dis Aquat Org Postmonorchis sp. inq. (Digenea: Monorchiidae) metacercariae infecting natural beds of wedge clam Donax trunculus in Italy F. Carella1,*, J. Culurgioni2, S. Aceto1, G. Fichi3, T. Pretto4, D. Luise1, A. Gustinelli5, G. De Vico1 1Department of Biology, University of Naples Federico II, 80134 Napoli, Italy 2Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy 3Laboratory of Ichthyopathology, Experimental Zooprophylactic Institute of Lazio and Tuscany, 56123 Pisa, Italy 4Experimental Zooprophylactic Institute of Venice, 35020 Legnaro, Padua, Italy 5Department of Veterinary Public Health and Animal Pathology, University of Bologna, 40064 Ozzano dell’ Emilia, Italy ABSTRACT: The wedge clam Donax trunculus Linnaeus, 1758 is one of the most common bivalve molluscs inhabiting the sandy shores of the Mediterranean Sea and is considered an important commercial resource. In this study, we report the first molecular, morphological and histopatho- logical descriptions of metacercariae from a trematode belonging to the genus Postmonorchis (Digenea: Monorchiidae) that infects D. trunculus in natural beds of the Italian Tyrrhenian coast (Campania, Lazio and Tuscany). Morphological analysis of the parasite revealed a combination of features that exist in the 3 previously identified species of Postmonorchis, viz. P. donacis, P. vari- abilis and P. orthopristis, with the addition of new, distinctive morphological characteristics. The pathogen exhibited a predilection for the gill; however, it was also present in the labial palp and mantle in addition to the gut, kidney epithelium and foot. The inflammatory response was charac- terised by either a focal or diffuse haemocyte infiltration followed by the formation of multiple, large multi-layered capsules associated with tissue destruction.
    [Show full text]