Drilling Predation Upon Ditrupa Arietina (Polychaeta: Serpulidae) from the Mid-Atlantic Açores, Portugal

Total Page:16

File Type:pdf, Size:1020Kb

Drilling Predation Upon Ditrupa Arietina (Polychaeta: Serpulidae) from the Mid-Atlantic Açores, Portugal AÇOREANA, Suplemento 6, Setembro 2009: 157-165 DRILLING PREDATION UPON DITRUPA ARIETINA (POLYCHAETA: SERPULIDAE) FROM THE MID-ATLANTIC AÇORES, PORTUGAL Brian Morton & E.M. Harper Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: [email protected] Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. E-mail: [email protected] ABSTRACT A small, but significant proportion of the empty tubes of the free-living serpulid Ditrupa arietina dredged from the seabed off São Miguel, Açores, were punctured by small round holes. Analysis of these holes shows that they are typically single, made from the outside of the tube and located preferentially, suggesting that they represent the work of a predator. The likely identity of the predator is discussed but based on the co-occurrence in the dredges and the fact that most of the holes have a distinctive countersunk mor- phology, it is suggested that they were made by the small naticid Natica prietoi. If so, this study is the first record of such a predator/prey relationship. RESUMO Uma pequena mas significativa porção de tubos do serpulídeo livre Ditrupa arietina dragados do fundo marinho ao largo de São Miguel, Açores, estavam perfurados por pequenos orifícios redondos. Análise desses orifícios mostra que eles são tipicamente singulares, feito a partir do exterior do tubo e localizados preferencialmente, sugerindo que representam o trabalho de um predador. Discute-se a identidade provável do predador mas, com base na co-ocorrência nas dragagens e no facto de que a maioria dos orifícios possui uma distinta morfologia chanfrada, sugere-se que foram feitos pelo pequeno naticídeo Natica prietoi. Assim sendo, este estudo é o primeiro registo de tal relação predador/presa. INTRODUCTION In contrast, little appears to be known about predatory activities upon the tube- lthough polychaete worms are a dwelling Serpulidae (Polychaeta) despite Amajor source of food for a number of their cosmopolitan occurrence and fre- predatory taxa including fish, gastropods quently high abundance. There is, how- and birds, most of our knowledge is ever, observational evidence that gas- focused on predation of the larger errant tropods (Taylor & Morton, 1996; Tan & taxa. For example, amongst the predato- Morton, 1998), fish (Bosence, 1979; ry gastropods, representatives of the Witman & Cooper, 1983) and crustaceans Muricidae, Columbellidae, Fasciolariidae, (Bosence, 1979) feed on serpulids and, in Vasidae and Buccinidae as well as many the case of the buccinid gastropod Engina conoideans are specialist worm predators armillata (Reeve, 1846) in Hong Kong, (Pearce & Thorson, 1967; Taylor, 1978a, b, they are its prey of choice (Tan & Morton, 1980; Taylor et al., 1980; Shimek, 1984; 1998). Additionally, the development of Taylor & Lewis, 1995). Similarly, many calcareous tubes, a well-developed wading birds are specialist predators “fright response” (Poloczanska et al., upon intertidal endobenthic polychaetes 2004) and, in the case of encrusting (Goss-Custard, 1975). species, an often cryptic habit suggest 158 AÇOREANA 2009, Sup. 6: 157-165 that the evolution of the Serpulidae may figure 4) illustrate a living D. arietina in have been influenced by predation pres- its life position in the sediment. sure. Part of the problem in recognising The species has been recorded as a predatory activity on serpulid worms dominant member of soft-bottom com- undoubtedly results from their typically munities at depths of 100–250 metres in cryptic lifestyles that make direct obser- the Açores where the tubes of dead indi- vations difficult. Indirect methods to viduals also provide domiciles for the detect predatory activity on serpulids sipunculan worm Aspidopsiphon muelleri must rely on analyses of the predator’s Diesing, 1851 (Morton & Britton, 1995; gut contents to recognise setae (Taylor & Morton & Salvador, 2009). Morton, 1996) or the identification of any characteristic damage to the tube caused MATERIALS AND METHODS by a predator, although for many preda- tors, for example E. armillata, which was During July 2006, large numbers of recorded feeding via the prey’s aperture the serpulid polychaete Ditrupa arietina (Tan & Morton, 1998), no such character- were collected from depths of between istic damage results. 50-200 metres off Vila Franca do Campo, In this paper we describe drill holes São Miguel, Açores. The samples were made in the tube of the endobenthic ser- collected and processed as reported in pulid Ditrupa arietina (Müller, 1776) from Morton & Salvador (2009). Following ini- the subtidal seabed off the island of São tial observations that some tubes were Miguel in the Açores (Portugal). We pre- perforated by drill holes, the tubes of sent evidence that these are the result of dead individuals were separated and predation and further discuss evidence inspected for evidence of such drilling. as to the likely culprit(s). For each holed tube, the following data were collected: tube length to the nearest Ditrupa arietina (Müller, 1776) 1 mm using vernier callipers, number of drillholes per tube and the morphology of Ditrupa arietina is a widespread the drillhole. Further observations were endobenthic serpulid worm, common in made on the morphology of the drillholes the Mediterranean where it achieves of a small number of specimens by scan- high densities and there is evidence in ning electron microscopy (SEM). These some areas that its abundance is increas- specimens were prepared by cleaning in ing (Gremare et al., 1998a, b; Bolam & an ultrasonic bath prior to mounting Fernandes, 2002; Labrune et al., 2007). them, coated in gold, for SEM (JEOL 820 – The worm secretes a curved, tusk- University of Cambridge). shaped, calcareous tube up to 23 mm Finally, the mean tube lengths plus long and about 3 mm across at its widest standard deviations of intact living indi- point. It lives within the sediment, the viduals of Ditrupa arientina and those narrowest posterior end down, with an with drill holes were compared using a anterior bulge (about 10% of the tube) t-test. exposed above the substratum. This anterior bulge houses the circlet of twen- RESULTS ty feeding tentacles when they are retracted and the anterior aperture is Holed individuals of Ditrupa arietina sealed by a further tentacle bearing an were identified from each of the six sam- operculum. Morton & Salvador (2009, pling stations, described by Martins et al. MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 159 (2009), but no significant differences in numbers were obtained between them with regard to the incidence of drilled tubes (see Morton & Salvador, 2009 for details). In total 5,453 tubes of D. arietina were retrieved and examined and from which we identified 104 fragments and intact empty tubes with holes in them, that is, approximately 1.9% of all empty tubes examined. The vast majority of the tubes were perforated by a single drill- hole but a few had two or even three com- plete holes. No incomplete holes were observed nor any that showed signs of repair or healing by the occupant. All were drilled perpendicular to the surface FIGURE 1. Scanning electron micrographs of a of the tube and were clearly produced variety of drill holes in the tubes of Ditrupa ari- from the outside, as evidenced by a wider etina collected from the seabed offshore from outer diameter. Vila Franca do Campo, São Miguel, Açores, in All holes in the tubes of Ditrupa arieti- 2006. Scale bars represent 100 µm for A and B na were small, with an outer diameter of and 200 µm C and D. less than 700 µm. In outline, the perfora- tions were mostly circular (Figure 1A, B) but a few were more elliptical (Figure 1C). The outer edges of the drillholes were clearly defined, and SEM observations of the surface of the tube adjacent to the hole show no obvious signs of either dissolu- tion or rasping. The inner perforations were rather more ragged and smaller than the outer diameter. Most of the holes we have examined had curved walls lead- ing to a countersunk morphology, although some (Figure 1D) were more straight-sided. FIGURE 2. Histograms showing the size dis- The positions of drill holes in the tributions (tube lengths) of living (white) and tubes of Ditrupa arietina are shown in drilled (black) individuals of Ditrupa arietina Figure 2. It is clear that most are located collected from the seabed offshore from Vila in the mid portion of the tube, below the Franca do Campo, São Miguel, Açores, in 2006. anterior bulge. Although they occur all around the circumference of the tube, the distribution of the holes is not uniform, there being a clear preference for the con- plotted together with the same data for cave aspect. drilled individuals in Figure 3. Although The length distributions of a sub-sam- virtually all sizes of D. arietina tubes were ple (n = 376) of living Ditrupa arietina drilled (from 5-21 mm tube lengths), the recorded by Morton & Salvador (2009) are mean length of the drilled D. arietina 160 AÇOREANA 2009, Sup. 6: 157-165 tubes (n = 102) was 12.7 (S.D. 4.3) where- An obvious question to try and as that of the tubes occupied by living D. address is the identity of the drilling arietina (n = 378) was 14.9 (S.D. 2.8). The predator(s). A wide array of predatory result of the t-test showed that the means taxa, including several species of gas- of the two samples were significantly dif- tropods, cephalopods, and worms, are ferent (p = <0.05), suggesting that drilled known to be able to drill holes in the individuals were smaller. skeletons of their prey items (Kabat, 1990). However, as noted by Bromley (1981), it is notoriously difficult to assign drillholes, with any degree of certainty, to a particular creator.
Recommended publications
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae)
    ISSN 0083-7903, 68 (Print) ISSN 2538-1016; 68 (Online) The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae) by PETER J. VINE ANOGlf -1,. �" ii 'i ,;.1, J . --=--� • ��b, S�• 1 • New Zealand Oceanographic Institute Memoir No. 68 1977 The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Frontispiece Spirorbinae on a piece of alga washed up on the New Zealand seashore. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) by PETER J. VINE Department of Zoology, University College, Singleton Park, Swansea, Wales, UK and School of Biological Sciences, James Cook University of North Queensland, Townsville, Australia PERMANENT ADDRESS "Coe! na Mara", Faul, c/- Dr Casey, Clifden, County Galway, Ireland New Zealand Oceanographic Institute Memoir No. 68 1977 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World list of Scientific Periodicals (4th edition: Mem. N.Z. oceanogr. Inst. 68 ISSN 0083-7903 Received for publication at NZOI January 1973 Edited by T. K. Crosby, Science InformationDivision, DSIR and R.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • Filogranula Cincta (Goldfuss, 1831), a Serpulid Worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin
    SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 71 • 2015 • čís. 3–4 • s. 293–300 Series B – Historia Naturalis • vol. 71 • 2015 • no. 3–4 • pp. 293–300 FILOGRANULA CINCTA (GOLDFUSS, 1831), A SERPULID WORM (POLYCHAETA, SEDENTARIA, SERPULIDAE) FROM THE BOHEMIAN CRETACEOUS BASIN TOMÁŠ KOČÍ Department of Palaeontology, Natural History Museum, National Museum, Václavské náměstí 68, 115 79 Praha 1, the Czech Republic; Ivančická 581, Praha 9 – Letňany 199 00, the Czech Republic; e-mail: [email protected] MANFRED JÄGER Lindenstrasse 53, D-72348 Rosenfeld, Germany; e-mail: [email protected] Kočí, T., Jäger, M. (2015): Filogranula cincta (GOLDFUSS, 1831), a serpulid worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin. – Acta Mus. Nat. Pragae, Ser. B Hist. Nat., 71(3-4): 293–300, Praha. ISSN 1804-6479. Abstract. Tubes of the serpulid worm Filogranula cincta (GOLDFUSS, 1831) were found in several rocky coast facies and other nearshore / shallow water localities in the Bohemian Cretaceous Basin ranging in geological age from the Late Cenomanian to the Late Turonian. A mor - phological description, discussion regarding systematics and taxonomy and notes on palaeoecology and stratigraphy are presented. ■ Late Cretaceous, Polychaeta, Filogranula, Serpulidae, Palaeoecology Received April 24, 2015 Issued December, 2015 Introduction any Filogranula cincta specimen. It seems that, apart from the vague mention from Strehlen by Wegner (1913), for more Filogranula cincta (GOLDFUSS, 1831) is a small and than a hundred years no additional finds of Filogranula inconspicuous but nevertheless common serpulid species in cincta from the BCB had been published until the present the Bohemian Cretaceous Basin (BCB).
    [Show full text]
  • Caye Caulker Forest and Marine Reserve
    Caye Caulker Forest and Marine Reserve- Integrated Management Plan 2004-2009 *** Prepared For Belize Coastal Zone Management Institute/Authority and Belize Fisheries Department By Ellen M McRae, Consultant, CZMA/I ACKNOWLEDGEMENTS 7 LIST OF TABLES 8 LIST OF MAPS 9 LIST OF ACRONYMS 10 1. INTRODUCTION 12 1.1 BACKGROUND INFORMATION 12 1.1.1 Habitat Suitability—Rationale for Area’s Selection 12 1.1.2 History of Caye Caulker’s Protected Areas 14 1.1.3 Current Status 15 1.1.4 Legislative Authority 15 1.1.5 Context 17 1.2 GENERAL INFORMATION 17 1.2.1 Purpose and Scope of Plan 17 1.2.2 Location 18 1.2.3 Access 19 1.2.4 Land Tenure and Seabed Use 19 1.2.5 Graphic Representation 20 1.2.5.1 Mapping 20 1.2.5.2 Aerial Photographic and Satellite Imagery 20 1.2.5.3 Other Remote Imagery 21 2 PHYSICAL ENVIRONMENT 21 2.1 GEOLOGY, SUBSTRATE AND BATHYMETRY 21 2.2 HYDROLOGY 22 2.3 TIDES AND CURRENTS 23 2.4 WATER QUALITY 23 2.4.1 Seawater 23 2.4.2 Groundwater and Surface Waters on the Caye 24 2.5 CLIMATE AND WEATHER 25 2.5.1 General Climate Regime 26 2.5.2 Rainfall 26 2.5.3 Extreme Weather Events 26 3 BIOLOGICAL ENVIRONMENT 29 3.1 EMERGENT SYSTEMS 29 3.1.1 Littoral Forest 29 3.1.1.1 Flora 31 3.1.1.2 Fauna 33 3.1.1.3 Commercially Harvested Species 36 3.1.1.4 Rare, Threatened and Endangered Species 37 3.1.1.5 Threats to Systems 38 3.1.2 Mangroves 39 3.1.2.1 Flora 40 3.1.2.2 Fauna 40 3.1.2.3 Commercially Harvested Species 42 3.1.2.4 Rare, Threatened and Endangered Species 43 3.1.2.5 Threats to System 44 3.2 SUBMERGED SYSTEMS 45 3.2.1 Seagrass and Other Lagoon
    [Show full text]
  • Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H
    Deepwater Tube Worms (Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H. BAILEy-BROCK2 THREE SERPULID TUBE WORMS have been dis­ (1906), but no serpulids were found. Hart­ covered on shells and coral fragments taken in man (1966a) reviewed the literature in an dredges from around the Hawaiian Islands. The extensive analysis of the Hawaiian polychaete two serpulines Spirobranchus latiscapus Maren­ fauna. Straughan (1969), presented a more zeller and Vermiliopsis infundibulum Philippi recent survey of the littoral and upper sublit­ are new records for the islands. However, the toral Serpulidae. Other works by Vine (1972) small spirorbid Pileolaria (Duplicaria) dales­ and Vine, Bailey-Brock, and Straughan (1972) traughanae Vine has been described previously include ecological data collected from settle­ from within diving depths (Vine, 1972), but ment plates and by diving, but no records ex­ it is absent from shoal waters and intertidal re­ tend below 28 meters. Serpulids have been gions. 3 The occurrence of this species in the described from deepwater collections in other dredged collections indicates an extensive depth parts of the world. Southward (1963) found range in the Hawaiian Islands. 14 species of calcareous tube worms on hard The tube worms were obtained from col­ substrata dredged from depths as great as 1,755 lections taken during two separate oceano­ meters along the continental shelf off south­ graphic investigations in Hawaiian waters. western Britain. Antarctic collections yielded 14 Material consisting mostly of the pink serpuline genera and more than 23 species from depths Spirobranchus latiscapus was loaned by Dr. E. C. ranging from the littoral zone down to 4,930­ Jones of the National Marine Fisheries Service 4,963 meters in the South Sandwich Trench (N.M.F.S.) and was taken from an average (Hartman, 1966b, 1967).
    [Show full text]
  • Fauna of Australia 4A Phylum Sipuncula
    FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places.
    [Show full text]
  • Fósiles Marinos Del Neógeno De Canarias (Colección De La ULPGC)
    FÓSILES MARINOS DEL NEÓGENO DE CANARIAS (COLECCIÓN DE LA ULPGC). DOS NEOTIPOS, CATÁLOGO Y NUEVAS APORTACIONES (SISTEMÁTICA, PALEOECOLOGÍA Y PALEOCLIMATOLOGÍA) Autor: Juan Francisco Betancort Lozano Las Palmas de Gran Canaria, 16 de enero de 2012 FÓSILES MARINOS DEL NEÓGENO DE CANARIAS (COLECCIÓN DE LA ULPGC): DOS NEOTIPOS, CATÁLOGO Y NUEVAS APORTACIONES (SISTEMÁTICA, PALEOECOLOGÍA Y PALEOCLIMATOLOGÍA) D. Juan Luis Gómez Pinchetti Secretario del Departamento de Biología de la Universidad de Las Palmas de Gran Canaria. Certifica: Que el Consejo de Doctores del Departamento en sesion extraordinaria tomó el acuerdo de dar el consentimiento para su tramitación, a la tesis doctoral titulada "FÓSILES MARINOS DEL NEÓGENO DE CANARIAS (COLECCIÓN DE LA ULPGC). DOS NEOTIPOS, CATÁLOGO Y NUEVAS APORTACIONES (SISTEMÁTICA, PALEOECOLOGÍA Y PALEOCLIMATOLOGÍA)" presentada por el doctorando Juan Francisco Betancort Lozano y dirigida por el Dr. Joaquín Meco Cabrera. Y para que así conste, y a efectos de lo previsto en el Artº 73.2 del Reglamento de Estudios de Doctorado de esta Universidad, firmo la presente en las Palmas de Gran Canaria, a de Febrero de 2012. 5 FÓSILES MARINOS DEL NEÓGENO DE CANARIAS (COLECCIÓN DE LA ULPGC): DOS NEOTIPOS, CATÁLOGO Y NUEVAS APORTACIONES (SISTEMÁTICA, PALEOECOLOGÍA Y PALEOCLIMATOLOGÍA) Las Palmas de Gran Canaria, a de Febrero de 2012 Programa de doctorado de Ecología y Gestión de los Recursos Vivos Marinos. Bienio: 2003-2005 Titulo de Tesis: Fósiles marinos del Neógeno de Canarias (Colección de la ULPGC). Dos neotipos, catálogo y nuevas aportaciones (Sistemática, Paleoecología y Paleoclimatología). Tesis Doctoral presentada por D Juan Francisco Betancort Lozano para obtener el grado de Doctor por la Universidad de Las Palmas de Gran Canaria, dirigida por el Dr.
    [Show full text]
  • Report on a Collection of Recent Shells from Obi and Halmahera (Moluccas)
    twa*/ ff « MEDEDEELINGEN VAN DE LANDBOUW- HOOGESCHOOLT EWAGENINGE N(NEDERLAND ) U ONDER REDACTIE VAN EEN COMMISSIE f UITDE NSENAA T i SECRETARIS PROF. DR. G. GRIJNS f f DEEL 29 VERHANDELING 1 REPORT ON A COLLECTION OF RECENT SHELLS FROM OBI AND HALMAHERA (MOLUCCAS) BY DR. C. H. OOSTINGH H. VEENMAN &ZONE N —WAGENINGE N — 1925 ^cSte GEDRUKTTE RALGEMEEN ELANDSDRUKKERI J The present paper deals with a collection of recent shells, chiefly marine, from the islands of Obi Major and Halmahera (or Gilolo) in the Moluccas (East Indian Archipelago). This collection forms part of the conchological collections kept in the Geological Museum of the Agricultural University at Wageningen (Holland). The shells from Halmahera have been collected on the East coast by the Rev. Maan, missionary at the mission Buli- and Weda-bay, E. coast of Halmahera, The shells from Obi Major were collected on the shores by Mrs. Ham when accompanying Prof. S. P. H a m, now in Wageningen, during a stay at that island in 1899. As I thought it useful to give a summary of the whole littoral marine and submarine molluscan fauna of the neighbourhood, I have included all the shell-bearing species which have hitherto been recorded from the ObiIs . and from Halmahera and surroun­ ding islands 1). Owing to the kindness of Dr. Fr. Haas, I was able to prepare part of this paper at the Senckenberg Museum in Frankfurt-on- Main, where I could avail myself of the excellent library. As to the part of this work made in Wageningen, I am much indebted to Prof, van Baren for his help in procuring the most indis­ pensable literature.
    [Show full text]
  • Shrimps and Prawns True Crabs Stomatopoda Bivalves Gastropods Cephalopoda Sea Turtles
    FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN CENTRAL ATLANTIC FISHING AREA 34 AND PART OF 47 Canada FUNDS 'IN-TRUST FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Canada Funds-in-Trust FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN CENTRAL ATLANTIC Fishing Areas 34, 47 (in part) edited by W. Fischer and G. Bianchi and W.B. Scott Marine Resources Service Huntsman Marine Laboratory Fishery Resources and Environment Division Brandy Cove, St. Andrews, NB FAO Fisheries Department, Rome Canada Italy This publication has been prepared and printed as an integral part of the FAO/Canada Government Cooperative Programme (Project GCP/INT/180/CAN) with the direct support of the Canadian International Development Agency (CIDA) and the Scientific Information and Publications Branch of the Department of Fisheries and Oceans, Canada VOLUME VI CONTENTS: Shrimps and Prawns True Crabs Stomatopoda Bivalves Gastropods Cephalopoda Sea Turtles Published by arrangement with the FOOD AND AGRICULTURE ORGANIZATION OF TEC UNITED NATIONS by the DEPARTMENT OF FISHERIES AND OCEANS, CANADA Ottawa, 1981 For bibliographic purposes this document should be cited as follows: Fischer, W., G. Bianchi and W.B. Scott (eds), 1981 FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34, 47 (in part). Canada Funds-in- Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. l-7:pag.var. Identification sheets.
    [Show full text]
  • Gastropod Molluscs of the Southern Area Of
    PAIDEIA XXI Vol. 10, Nº 2, Lima, julio-diciembre 2020, pp. 289-310 ISSN Versión Impresa: 2221-7770; ISSN Versión Electrónica: 2519-5700 http://revistas.urp.edu.pe/index.php/Paideia ORIGINAL ARTICLE / ARTÍCULO ORIGINAL GASTROPOD MOLLUSCS OF THE SOUTHERN AREA OF CIENFUEGOS, FROM THE BEACH RANCHO LUNA TO THE MOUTH OF THE ARIMAO RIVER, CUBA MOLUSCOS GASTRÓPODOS DE LA ZONA SUR DE CIENFUEGOS, DESDE PLAYA RANCHO LUNA HASTA LA DESEMBOCADURA DEL RÍO ARIMAO, CUBA Oneida Calzadilla-Milian1*; Rafael Armiñana-García2,*; José Alexis Sarría- Martínez1; Rigoberto Fimia-Duarte3; Jose Iannacone4,5; Raiden Grandía- Guzmán6 & Yolepsy Castillo-Fleites2 1* Universidad de Cienfuegos «Carlos Rafael Rodríguez», Cienfuegos, Cuba. E-mail: ocalzadilla@ ucf.edu.cu; [email protected] 2 Universidad Central «Marta Abreu» de Las Villas, Villa Clara, Cuba. E-mail: rarminana@uclv. cu / ycfl [email protected] 3 Facultad de Tecnología de la Salud y Enfermería (FTSE). Universidad de Ciencias Médicas de Villa Clara (UCM-VC), Cuba. E-mail: rigoberto.fi [email protected] 4 Laboratorio de Ecología y Biodiversidad Animal (LEBA). Facultad de Ciencias Naturales y Matemáticas (FCNNM). Universidad Nacional Federico Villarreal (UNFV). Lima, Perú. 5 Facultad de Ciencias Biológicas. Universidad Ricardo Palma (URP). Lima, Perú. E-mail: [email protected] 6 Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB), La Habana, Cuba. E-mail: [email protected] * Author for correspondence: [email protected] ABSTRACT The research presented shows a malacological survey of Cienfuegos' southern area, from “Rancho Luna” beach to the mouth of the “Arimao River”. The malacological studies ranged from January 2018 to December of the same year.
    [Show full text]