(12) United States Patent (10) Patent No.: US 8,349,977 B2 Koenig Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,349,977 B2 Koenig Et Al US008349977B2 (12) United States Patent (10) Patent No.: US 8,349,977 B2 Koenig et al. (45) Date of Patent: Jan. 8, 2013 (54) PROCESS FOR PREPARING W. W338 A .289 SETITY ISOBUTENE HOMO- OR WO WO 2010, 139684 A1 12/2010 OTHER PUBLICATIONS (75) Inventors: Hannah Maria Koenig, Mannheim (DE); Klaus Muellbach, Gruenstadt Edward C. Leonard. “High Polymers'. Wiley-Interscience, A Divi (DE); Matthias Kiefer, Ludwigshafen sion of John Wiley & Sons, Inc., vol. XXIV. (part 2), 1971, 1 front (DE); Sergei V. Kostjuk, Minsk (BY); page, pp. 713-733. 66/ - - - - - Irina Vasilenko, Minsk (BY): James D. Burrington, et al., Cationic polymerization using s s heteropolyacid salt catalysts'. Topics in Catalysis, vol. 23, Nos. 1-4. Alexander Frolov, Svisloch (BY) Aug. 2003, pp. 175-181. Sergei V. Kostjuk, et al., “Novel Initiating system based on AlCl (73) Assignee: BASFSE, Ludwigshafen (DE) etherate for quasiliving cationic polymerization of styrene'. Polymer Bulletin, vol. 52, 2004, pp. 227-234. (*) Notice: Subject to any disclaimer, the term of this Sergei V. Kostjuk, et al., “Cationic Polymerization of Styrene in patent is extended or adjusted under 35 Solution and Aqueous Suspension Using B(C6F5) as a Water-Toler U.S.C. 154(b) by 0 days. ant Lewis Acid', Macromolecules, vol.39, No. 9, Apr. 8, 2006, pp. 3110-3113. (21) Appl. No.: 13/029,413 U.S. Appl. No. 13/126,857, filed Apr. 29, 2011, Hildebrandt, et al. U.S. Appl. No. 13/305,132, filed Nov. 28, 2011, Koenig, et al. (22) Filed: Feb. 17, 2011 U.S. Appl. No. 13/305,283, filed Nov. 28, 2011, Koenig, et al. Y. Li et al.: “Electron-Pair-Donor Reaction Order in the Cationic (65) Prior Publication Data Polymerization of Isobutylene Coinitiated by AICI3” in: Journal of Polymer Science, Part A: Polymer Chemistry, vol. 45, No. 14, pp. US 2011 FO2O1772 A1 Aug. 18, 2011 3053-3061 (2007). L. Ambrozet al.: “Donor-Acceptor-Interactions in Cationic Polymer Related U.S. Application Data ization. II. Influence of Some Bases of Polymerization of Isobutylene' in: Journal of Polymer Science, vol. 30, pp. 381-389 (60) Provisional application No. 61/417,895, filed on Nov. (2003). 30, 2010, provisional application No. 61/315,431, M. Bahadur et al.: “Dimethylaluminium Chloride Catalyzed Living filed on Mar. 19, 2010, provisional application No. Isobutylene Polymerization” in: Macromolecules vol. 33, pp.9548 61/305,159, filed on Feb. 17, 2010. 9552 (2000). International Search Report of corresponding PCT/EP2011/051929. (51) Int. Cl. CSF 4/4 (2006.01) * cited by examiner CSF IO/TO (2006.01) (52) U.S. Cl. ..................... s26/27,526,3486,526,210. Primary Examiner Robert D. Harlan 526/212:526/290; 526/348.7 (74) Attorney, Agent, or Firm — Oblon, Spivak, (58) Field of Classification Search .................. sos, McClelland, Maier & Neustadt, L.L.P. 526/64, 210, 212, 290, 348.7 See application file for complete search history. (57) ABSTRACT Preparation of high-reactivity isobutene homo- or copoly (56) References Cited mers with a content of terminal vinylidene double bonds per polyisobutene chain end of at least 50 mol % and a polydis U.S. PATENT DOCUMENTS persity of preferably 1.05 to less than 3.5, by polymerizing 5,169,914 A 12/1992 Kaszas et al. isobutene or an isobutene-comprising monomer mixture in 5,324,878 A * 6/1994 Brunelli et al. ............... 585,508 the presence of an aluminum trihalide-donor complex effec 5,340,881 A 8/1994 Kennedy et al. tive as a polymerization catalyst or of an alkylaluminum 5,408,018 A 4, 1995 Rath halide-donor complex, especially of an aluminum trichlo FOREIGN PATENT DOCUMENTS ride-donor complex, said complex comprising, as the donor, DE 27 O2 604 A1 T 1978 an organic compound with at least one ether function or a EP O 145235 A1 6, 1985 carboxylic ester function. WO WO99,64482 * 12/1999 WO WO99,64482 A1 12/1999 25 Claims, No Drawings US 8,349,977 B2 1. 2 PROCESS FOR PREPARING In the literature article “Cationic polymerization using het HIGH-REACTIVITY ISOBUTENE HOMO- OR eropolyacid salt catalysts’ in Topics in Catalysis Vol. 23, p. COPOLYMERS 175-181 (2003), James D. Burrington et al. indicate that, with aluminum trichloride as a polymerization catalyst for The present invention relates to a novel process for prepar isobutene, only low-reactivity polyisobutenes with a low con ing high-reactivity isobutene homo- or copolymers with a tent of terminal vinylidene double bonds (C.-double bonds) content of terminal vinylidene double bonds per poly can be obtained. For instance, table 1 on page 178 of this isobutene chain end of at least 50 mol%. The present inven literature article cites an example of a polyisobutene prepared tion further relates to novel isobutene polymers. with AlCls, which has a number-average molecular weight In contrast to so-called low-reactivity polymers, high-re 10 Mn of 1000-2000, a polydispersity Mw/Mn of 2.5-3.5 and a activity isobutene homo- or copolymers are understood to content of vinylidene isomer (C.-double bond) of only 5% (in mean those polyisobutenes which comprise a high content of addition to 65% “tri", 5% “B” and 25% “tetra). terminal ethylenic double bonds (C.-double bonds), specifi In the literature article “Novel initiating system based on cally in practice usually of at least 80 mol %, based on the AlCletherate for quasiliving cationic polymerization of sty individual chain ends of the polyisobutene macromolecules. 15 rene' in Polymer Bulletin Vol. 52, p. 227-234 (2004), Sergei In the context of the present application, vinylidene groups V. Kostjuk et al. describe a catalyst system composed of are understood to mean those double bonds whose position in 2-phenyl-2-propanol and an aluminum trichloride/di-n-butyl the polyisobutene macromolecule is described by the general ether complex for polymerization of styrene. The polydisper formula sities M/M of the styrene polymers thus prepared are “-2.5” (see summary) or '-3' (see page 230). It was an object of the present invention to provide a pro cess for preparing high-reactivity isobutene homo- or copoly mers with a content of terminal vinylidene double bonds per polymer )- polyisobutene chain end of at least 80 mol % and simulta 25 neously with a narrow molecular weight distribution (i.e. low polydispersities) in acceptable yields. The catalyst system i.e. the double bond is present in an a position in the polymer should at the same time have sufficient activity and service chain. “Polymer represents the polyisobutene radical short life, the handling thereof should be unproblematic and it ened by one isobutene unit. The vinylidenegroups exhibit the should not be prone to failure. highest reactivity, for example in the thermal addition onto 30 The object was achieved by a process for preparing high sterically demanding reactants such as maleic anhydride, reactivity isobutene homo- or copolymers with a content of whereas a double bond further toward the interior of the terminal vinylidene double bonds per polyisobutene chain macromolecules in most cases exhibits lower reactivity, if end of at least 50 mol %, which comprises polymerizing any, in functionalization reactions. The uses of high-reactiv isobutene or an isobutene-comprising monomer mixture in ity polyisobutenes include use as intermediates for preparing 35 the presence of an aluminum trihalide-donor complex effec additives for lubricants and fuels, as described, for example, tive as a polymerization catalyst or of an alkylaluminum in DE-A 27 O2 604. halide-donor complex, said complex comprising, as the Such high-reactivity polyisobutenes are obtainable, for donor, an organic compound with at least one ether function example, by the process of DE-A 27 02 604 by cationic or a carboxylic ester function. polymerization of isobutene in the liquid phase in the pres 40 Isobutene homopolymers are understood in the context of ence of borontrifluoride as a catalyst. A disadvantage here is the present invention to mean those polymers which, based on that the polyisobutenes obtained have a relatively high poly the polymer, are formed from isobutene to an extent of at least dispersity. The polydispersity is a measure of the molecular 98 mol %, preferably to an extent of at least 99 mol %. weight distribution of the resulting polymer chains and cor Accordingly, isobutene copolymers are understood to mean responds to the quotient of weight-average molecular weight 45 those polymers which comprise more than 2 mol% of copo M, and number-average molecular weight M (PDI-M/ lymerized monomers other than isobutene, for example linear M). butenes. Polyisobutenes with a similarly high proportion of termi In the context of the present invention, the following defi nal double bonds but with a narrower molecular weight dis nitions apply to generically defined radicals: tribution are, for example, obtainable by the process of EP-A 50 A C- to Cs-alkyl radical is a linear or branched alkyl 145 235, U.S. Pat. No. 5,408,018 and WO 99/64482, the radical having 1 to 8 carbon atoms. Examples thereof are polymerization being effected in the presence of a deactivated methyl, ethyl, n-propyl, isopropyl. n-butyl, 2-butyl, isobutyl, catalyst, for example of a complex of boron trifluoride with tert-butyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbu alcohols and/or ethers. tyl, 2,2-dimethyl-propyl, 1-ethylpropyl, n-hexyl, 1,1-dimeth High-reactivity polyisobutenes are also obtainable by liv 55 ylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpen ing cationic polymerization of isobutene and Subsequent tyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1.2- dehydrohalogenation of the resulting polymerization prod dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2.3- uct, for example by the process from U.S.
Recommended publications
  • Exam 1 (February 23, 2004) ID# ______
    Chemistry 211 Name ___________________________ Exam 1 (February 23, 2004) ID# ___________________________ 10 1. You desire to synthesize 3-ethyl-3-pentanol starting with an ester. (i) What would be the name of the ester, and what is the name for the Grignard reagent (e.g., methyl magnesium bromide)? (ii) For the carbons shown in the product, show plausible hydrocarbons that you could start with to produce the ester and the Grignard reagent (as in a retrosynthesis). 12 2. (i) Show the step-by-step process required to produce propyllithium, which requires a free radical reaction mechanism, . (ii) Show the complete reaction mechanism for reaction between propyllithium and the correct ketone to produce 3-propyl-3-pentanol. (iii) Propose a possible reaction mechanism by which dipropyl cuprate (Cu+ with two propyl groups attached) could react with ethyl bromide to produce a new hydrocarbon. (This is a thinking exercise! So, think! () 8 3. As mentioned in the text, diethyl ether, pentane, and 1-butanol have similar molar masses, but different physical properties. Boiling points are 35oC, 36oC, and 117oC, respectively. Their respective solubilities in water are 7.5g/100mL, insoluble, and 9g/100mL. (i) Draw structures for each of these compounds. (ii) Justify the observed boiling points and their solubilities. 16 4. Draw structures of the following compounds 2,3-heptanediol isopropyllithium benzylmagnesium bromide benzoic acid benzaldehylde dimethyl sulfide t-butyl methanoate dibutyl ketone 12 5. Alcohols can be oxidized to produce other compounds, and can be produced by reduction. For the reactions shown below, show the structure for the expected product (if reaction does not occur, state: No Reaction) when treated with the indicated oxidizing or reducing agents.
    [Show full text]
  • WO 2008/096257 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 14 August 2008 (14.08.2008) WO 2008/096257 Al (51) International Patent Classification: 500038 (IN). BURIDIPADU, Sunil Kumar [IN/IN]; C07D 239/42 (2006.01) Aurobindo Pharma Limited, Plot No.2, Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN). (21) International Application Number: MEENAKSHISUNDERAM, Sivakumaran [IN/IN]; PCT/IB2008/000290 Aurobindo Pharma Limited, Plot No.2, Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN). (22) International Filing Date: 4 February 2008 (04.02.2008) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (26) Publication Language: English CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (30) Priority Data: IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, 277/CHE/2007 8 February 2007 (08.02.2007) IN LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, 1121/CHE/2007 29 May 2007 (29.05.2007) IN MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, (71) Applicant (for all designated States except US): AU- SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ROBINDO PHARMA LIMITED [IN/IN]; Plot No.2, ZA, ZM, ZW Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN).
    [Show full text]
  • Grignard Reaction: Synthesis of Triphenylmethanol
    *NOTE: Grignard reactions are very moisture sensitive, so all the glassware in the reaction (excluding the work-up) should be dried in an oven with a temperature of > 100oC overnight. The following items require oven drying. They should be placed in a 150mL beaker, all labeled with a permanent marker. 1. 5mL conical vial (AKA: Distillation receiver). 2. Magnetic spin vane. 3. Claisen head. 4. Three Pasteur pipettes. 5. Two 1-dram vials (Caps EXCLUDED). 6. One 2-dram vial (Caps EXCLUDED). 7. Glass stirring rod 8. Adaptor (19/22.14/20) Grignard Reaction: Synthesis of Triphenylmethanol Pre-Lab: In the “equations” section, besides the main equations, also: 1) draw the equation for the production of the byproduct, Biphenyl. 2) what other byproduct might occur in the reaction? Why? In the “observation” section, draw data tables in the corresponding places, each with 2 columns -- one for “prediction” (by answering the following questions) and one for actual drops or observation. 1) How many drops of bromobenzene should you add? 2) How many drops of ether will you add to flask 2? 3) 100 µL is approximately how many drops? 4) What are the four signs of a chemical reaction? (Think back to Chem. 110) 5) How do the signs of a chemical reaction apply to this lab? The Grignard reaction is a useful synthetic procedure for forming new carbon- carbon bonds. This organometallic chemical reaction involves alkyl- or aryl-magnesium halides, known as Grignard 1 reagents. Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal.
    [Show full text]
  • Organic Chemistry Laboratory II Preparation of Triphenylmethanol (Grignard Reaction) Experiment Procedure (Printable Pdf Format)
    grigdes http://www.organicchem.org/oc2web/lab/exp/grig/grigdesbenzophenone... Organic Chemistry II | Lecture | Laboratory Organic Chemistry Laboratory II Preparation of Triphenylmethanol (Grignard Reaction) Experiment Procedure (Printable pdf format) Introduction In this two-week experiment, triphenylmethanol will be synthesized through a Grignard reaction. Students will work individually to prepare the Grignard reagent by reacting bromobenzene with solid magnesium in diethylether. The prepared Grignard reagent, phenylmagnesium bromide, will then be combined with bezophenone to form the desired triphenylmethanol product. Procedure NOTE: All glassware must be extremely dry! Place glassware in the drying oven for at least 10 minutes before beginning the reaction. Preparation of the Grignard Reagent Add ~0.5g of magnesium turnings and a magnetic stir bar to a dry 100 ml round-bottomed flask, and place the flask in the drying oven for 30 minutes. Remove the flask from the oven, clamp it to a ring stand, insert a reflux condenser, fit the flask into a heating mantle and immediately attach a drying tube to the top of the reflux condenser. Position the flask in the heating mantle on a stirrer/hotplate. Set the reaction up on the side of the hood near to the faucet labeled for distillation. Allow the reaction flask to cool to room temperature completely before proceeding. While the flask is cooling, place a 150ml beaker into the drying oven. While the flask is cooling, add 3.5 g of dry bromobenzene to a dry 50 mL Erlenmeyer flask and dissolve it in 5.0 mL of anhydrous diethyl ether. Use a glass powder funnel to dispense the bromobenze and ether to the Erlenmyer flask.
    [Show full text]
  • The Development of Simplified Microreactors for Use in Multi-Step Reaction Sequences
    THE DEVELOPMENT OF SIMPLIFIED MICROREACTORS FOR USE IN MULTI-STEP REACTION SEQUENCES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Andrew R. Bogdan August 2009 © 2009 Andrew R. Bogdan THE DEVELOPMENT OF SIMPLIFIED MICROREACTORS FOR USE IN MULTI-STEP REACTION SEQUENCES Andrew R. Bogdan, Ph. D. Cornell University 2009 This dissertation describes the development of simplified microreactors to be used in multi-step reaction sequences. Microreactors are a developing technology with numerous benefits and whose modular design permits multi-step reaction sequences to be performed in a continuous flow process. The first chapter discusses the physical properties of microreactors and describes how performing reactions in these miniaturized reactors leads to safer, more efficient and more selective chemical transformations. A brief discussion of multi-step reaction sequences already performed in flow will also be presented. These multi-step reaction sequences, however, rarely rely on catalysis to facilitate chemical transformations. This area therefore has room for great improvement. The next two chapters discuss the development and application of solid-supported catalysts to be used in flow. In the first of these two chapters, two catalysts are immobilized on a solid-support and used in a simplified flow reactor. These reactions proved to be more efficient than similar batch reaction and the catalysts were highly recyclable. The next chapter presents a supported TEMPO catalyst used to oxidize alcohols to carbonyl species. These three catalysts set the foundation for multi-step flow reaction to be potentially performed in the group.
    [Show full text]
  • 318 Lab Schedule
    CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA Organic Chemistry Laboratory CHM 318L Schedule – Winter 2016 CHM 318L Prerequisites: CHM 317L Concurrent or Prerequisite: CHM 315* Date Experiment/Activity Experimental Procedure and Required Reading 1 1/4 Check-in. Introduction to KLW Chapters on “Infrared Spectroscopy” and “Nuclear NMR Spectroscopy Magnetic Resonance Spectroscopy” (KLW = Williamson text) Wade Ch. 12 (IR) and Wade Ch. 13 (NMR) 2 1/11 NMR spectroscopy (cont’d) 3 1/18 Holiday 4 1/25 “Alkenes from Alcohols: KLW Macroscale #2, 20 g scale, skip toluene chaser Cyclohexene from Wade Ch. 7-10 “Alkene Synthesis by Dehydration of Alcohols” Cyclohexanol” 5 2/1 Addition/Elimination KLW Synthesis of “meso-Stilbene Dibromide” Microscale #2, “Synthesis of an Alkyne run reaction at four times scale (200 mg stillbene); and “Synthesis from an Alkene: of Diphenylacetylene” Microscale #3, use product isolated from Bromination and Microscale #2 Dehydrobromination” Wade Ch. 8-8 “Addition of Halogens to Alkenes” and Wade Ch 7-9 “Alkene Synthesis by (E2) Elimination of Alkyl Halides” 6 2/8 “Oxidation: Cyclohexanol KLW Macroscale #4 at 1/3 the amounts (2.7 mL cyclohexanol), to Cyclohexanone” includes Macroscale #3 “Isolation of Cyclohexanone from the Steam Distillate” (also review KLW chapter on Steam Distillation) Wade Ch. 11-2 “Oxidation of Alcohols” 7 2/15 “Sodium Borohydride KLW run reaction at four times scale (1.2 g ketone) Reduction of NOTE: sodium borohydride contains four equivalents of hydride 2-Methylcyclohexanone” (i.e., 1 mole NaBH4 = 4 moles hydride) Wade Ch. 10-11 & 18-20 “Reductions of Ketones & Aldehydes” 8 2/22 “Grignard Synthesis of KLW preparation of “Phenylmagnesium Bromide” Macroscale Triphenylmethanol” #4, run reaction at 1/2 scale and then use the entire amount in the next step, “Triphenylmethanol from Benzophenone” #6 and “Completion of Grignard Reaction,” #7 Wade Ch.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • United States Patent Office Paterated Feb
    3,306,895 United States Patent Office Paterated Feb. 28, 1967 1. 2 3,306,895 The compounds of this invention are obtained by treat HETEROCYCLIC DERVATIVES OF TRPHENYL ment of triphenylethylene derivatives of the type: , ETHYLENES, TRIPHENYLETHANES AND TRI PHENYLETHANOLS Edward McCreery Roberts, George Philip Claxton, and 5 Frances Gertrude Fallon, Cincinnati, Ohio, assignors to Richardson-Merrell Inc., New York, N.Y., a corpo ration of Delaware No Drawing. Filed June 27, 1962, Ser. No. 205,551 10 Claims. (C. 260-240) k This invention relates to a series of novel and useful O where R and R' are as previously defined, with an ap compounds and processes for preparing the same. More propriate organometallic derivative such as cy-picolyl particularly, this invention relates to a series of triphenyl lithium (as in Examples 2 and 5), 3-pyridyl lithium (as ethanes, triphenylethylenes, and triphenylethanols, in in Example 6), or 2-pyridyl lithium (as in Examples 1 which one of the phenyl groups is substituted with a pyri and 4). Such treatment is conveniently carried out by dyl or reduced pyridyl ring which is separated from the mixing the reactants in an inert solvent such as ether, aromatic portion of the molecule by an oxygenated alkyl benzene, toluene, or combinations of such inert solvents fragment of one, two or three carbon atoms. The inven at appropriate temperatures chosen in the range of tion also includes nontoxic, water-soluble addition salts, -60° C. to 80° C. The resulting imine is hydrolyzed to quaternary ammonium derivatives and N-oxide deriva the corresponding ketone without being isolated by being tives of the new compounds.
    [Show full text]
  • Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
    1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence.
    [Show full text]
  • The Effects of Stoichiometry and Starting Material on the Product Identity and Yield in Grignard Addition Reactions
    Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 The effects of stoichiometry and starting material on the product identity and yield in Grignard addition reactions Supplementary Material This experiment has been performed both in the 150 person standard introductory organic chemistry laboratory (taught primarily by undergraduate teaching assistants in five sections of 30-40 students) and in a special introductory organic chemistry laboratory for freshman, taught to 23 students in sections of 7 and 16. This course is the first organic laboratory for these students but has been taught in the spring semester along with the second semester of organic lecture. The lab periods for this course are five hours long, and this experiment is typically performed in the latter half of the semester. This experiment is used to illustrate to students the importance of planning their time in lab; they must be out of the lab in the 5 hours allotted. While many students finish the experiment in this time, others plan to finish the following week along with a shorter experiment. Those who were running behind were encouraged to finish through the drying of their organic layer with MgSO4 and set up the distillation the following week. When doing this they should make sure that their organic layer is in a closed container to prevent evaporation of their product. Moisture Sensitive Conditions There are many diverse protocols for maintaining the anhydrous conditions required to successfully prepare and utilize Grignard reagents. We typically open a fresh can of anhydrous ether and dispense it directly, without additional drying in a still or air sensitive techniques for solvent transfers.
    [Show full text]
  • CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic Anhydride Liquid
    CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic anhydride liquid Acetaminophen Synthesis p-aminophenol solid Alcohols to Alkyl chlorides 2-pentanol liquid Alcohols to Alkyl chlorides Hydrochloric acid 12 M Alcohols to Alkyl chlorides Sodium carbonate solid Alcohols to Alkyl chlorides Hydrobromic acid 48% w/v Alcohols to Alkyl chlorides Sodium sulfate anhydrous solid Alcohols to Alkyl chlorides sec-phenethyl alcohol liquid Alcohols to Alkyl chlorides Benzyl alcohol liquid Alcohols to Alkyl chlorides t-butanol liquid Alcohols to Alkyl chlorides 1-pentanol liquid Alcohols to Alkyl chlorides Sodium carbonate 10% w/v Diels Alder Reaction 2,3-dimethyl-1,3-butadiene liquid Diels Alder Reaction Maleic anhydride solid Diels Alder Reaction Ethanol 95% Liquid Diels Alder Reaction Hexane liquid Diels Alder Reaction Cyclohexane liquid Diels Alder Reaction Calcium chloride solid Esterification methanol liquid Esterification Sodium carbonate 10% w/v Esterification 1-propanol liquid Esterification 1-butanol liquid Esterification trans-cinnamic acid solid Esterification Isoamyl alcohol liquid Esterification Isopropyl alcohol liquid Esterification Benzyl alcohol liquid Esterification Sulfuric acid conc. 18 M Esterification 1-pentanol liquid Esterification Isobutyl alcohol liquid Esterification Ethanol 95% liquid Page 1 of 3 Experiment Title Chemical Name Concentration Extraction of Beta Carotene Cyclohexane liquid Extraction of Beta Carotene Beta carotene UV
    [Show full text]
  • Organic Chemistry Laboratory Experiments for Organic Chemistry Laboratory 860-121-02 Mw 1:00-4:00
    ORGANIC CHEMISTRY LABORATORY EXPERIMENTS FOR ORGANIC CHEMISTRY LABORATORY 860-121-02 MW 1:00-4:00 WRITTEN, COMPILED AND EDITED BY LINDA PAAR JEFFREY ELBERT KIRK MANFREDI SPRING 2008 TABLE OF CONTENTS SYNTHESIS OF ASPIRIN 1 MELTING POINT AND CRYSTALLIZATION 2 DISTILLATION 8 EXTRACTION 11 TLC AND CHROMATOGRAPHY 14 NATURAL PRODUCTS: ISOLATION OF LIMONENE 23 FREE RADICAL CHLORINATION 24 SN1 AND SN2 REACTIONS 27 DEHYDRATION REACTIONS 30 GRIGNARD SYNTHESIS 32 COMPUTATIONAL CHEMISTRY 36 MULTIPLE STEP SYNTHESIS 38 ORGANIC CHEMISTRY 121 EXPERIMENT 1 SYNTHESIS OF ASPIRIN FROM SALICYLIC ACID Aspirin is one of the oldest and most common drugs in use today. It is both an analgesic (pain killer) and antipyretic (reduces fever). One method of preparation is to react salicylic acid (1 ) with acetic anhydride (2) and a trace amount of acid (equation 1). O OH CH3 O COOH COOH + H + CH3COOH + (CH3CO)2O 3 4 1 2 The chemical name for aspirin is acetylsalicylic acid (3) PROCEDURE Place 3.00 g of salicylic acid in a 125 ml Erlenmeyer flask. Cautiously add 6 ml of acetic anhydride and then 5 drops of concentrated H2SO4. Mix the reagents and heat the flask in a beaker of water warmed to 80-90°C, for 10 minutes. Remove the Erlenmeyer flask and allow it to cool to room temperature. Add 40 ml of H2O and let the sample crystallize in an ice-water bath.* Filter and wash the crystals with cold water. Allow them to air dry overnight and weigh the product. What is the percent yield? One drawback to this synthetic procedure is that there is the possibility of some left over salicylic acid.
    [Show full text]