The Development of Simplified Microreactors for Use in Multi-Step Reaction Sequences

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Simplified Microreactors for Use in Multi-Step Reaction Sequences THE DEVELOPMENT OF SIMPLIFIED MICROREACTORS FOR USE IN MULTI-STEP REACTION SEQUENCES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Andrew R. Bogdan August 2009 © 2009 Andrew R. Bogdan THE DEVELOPMENT OF SIMPLIFIED MICROREACTORS FOR USE IN MULTI-STEP REACTION SEQUENCES Andrew R. Bogdan, Ph. D. Cornell University 2009 This dissertation describes the development of simplified microreactors to be used in multi-step reaction sequences. Microreactors are a developing technology with numerous benefits and whose modular design permits multi-step reaction sequences to be performed in a continuous flow process. The first chapter discusses the physical properties of microreactors and describes how performing reactions in these miniaturized reactors leads to safer, more efficient and more selective chemical transformations. A brief discussion of multi-step reaction sequences already performed in flow will also be presented. These multi-step reaction sequences, however, rarely rely on catalysis to facilitate chemical transformations. This area therefore has room for great improvement. The next two chapters discuss the development and application of solid-supported catalysts to be used in flow. In the first of these two chapters, two catalysts are immobilized on a solid-support and used in a simplified flow reactor. These reactions proved to be more efficient than similar batch reaction and the catalysts were highly recyclable. The next chapter presents a supported TEMPO catalyst used to oxidize alcohols to carbonyl species. These three catalysts set the foundation for multi-step flow reaction to be potentially performed in the group. The ensuing chapter uses a flow reactor to facilitate a two-step click reaction starting from an alkyl halide, sodium azide and a terminal acetylene. This process proved to be high throughput and rapidly synthesized vast libraries of compounds to be submitted for biological testing. The next two chapters discuss the synthesis of the ibuprofen and atropine in flow. Initial studies were carried out to synthesize both of these drugs in flow as part of a project geared toward synthesizing drugs on-demand. Later, a continuous flow synthesis of ibuprofen was realized using a series of reactions in which excess reagents and byproducts were compatible with downstream reactions. Finally, on-going work to develop asymmetric, multi-step reaction sequences in flow will be discussed in which the majority of reaction steps utilize solid-supported catalysts. BIOGRAPHICAL SKETCH Andrew Robert Bogdan (known as Drew to everybody who knows him) was born in State College, PA in 1982. He spent the next 18 years growing up in the shadows of Penn State University, but despite his love for Nittany Lion football, he pledged that he would never be a student there. During his senior year in high school, Drew applied to only one college, Franklin & Marshall, and thankfully they let him in. Knowing from the start that he was going to be a chemistry major, Drew immersed himself in the chemistry department and became close to various faculty members. After his sophomore year, Drew was granted the opportunity to perform undergraduate research at Syracuse University under the supervision of Dr. John E. Baldwin. Upon returning to Franklin and Marshall in August of 2002, Drew continued to collaborate with Dr. Baldwin while working in Dr. Phyllis A. Leber’s laboratory, ultimately continuing this research until graduation. Drew graduated cum laude from Franklin and Marshall in May of 2004, having achieved various departmental chemistry awards during his time in school. Drew decided to head to New York state for graduate school, where he joined the group of Dr. D. Tyler McQuade at Cornell University in late 2004. Soon thereafter he started working with microcapsules and microreactors, in efforts to develop multi-step reaction sequences. In September of 2007, Drew joined the group during its move to Florida State University, where he would complete his doctorate. Friends back in Ithaca were jealous of Drew for living in the Sunshine State. Unfortunately for Drew, he remained as pasty as ever during his time in Tallahassee, rarely venturing outside during the daylight hours. Drew focused on completing his degree and instead of getting a tan. iii To my family. iv ACKNOWLEDGMENTS Graduate school was anything but typical for me. At one point, I was a Florida resident living in California who was enrolled at a school in New York State. That being said, I cannot imagine going through graduate school without the constant support of numerous people. My family and friends were always there, serving as perpetual sources of advice and laughter, helping me through complicated times. Thanks to my advisor D. Tyler McQuade, who provided me with the guidance and knowledge necessary to help me complete this degree. Furthermore, his confidence in me helped me develop as an independent scientist and made me realize that no matter what challenges I am confronted with, I have the ability to overcome them. I would also like to thank Phyllis Leber, who provided constant support and advice throughout both my undergraduate and graduate careers. I am deeply grateful for my parents. Throughout my life, they have always been supportive of the decisions I have made, and made it possible to be in places that I never thought I would be. Thanks to my big brother, Matt, who finally stopped abusing me as a child, having finally realized that sending me to the hospital repeatedly was not in anybody’s best interest. Steve Broadwater showed me the ropes in graduate school and helped set the foundation for my graduate career. He has always been the source of valuable insight and I cannot thank him enough. I would also like to thank Sarah Poe who was with me since the first day in the group. She has always been there when I needed advice, a laugh, cookies, or somebody to annoy (despite the fact she graduated months before I did). I cannot imagine graduate school without these two, and thankfully the memories go beyond lab, ranging from tire fires to the more traditional barbeques. To everybody else who has helped me along the way, in both Ithaca and Tallahassee, thank you. v TABLE OF CONTENTS Biographical Sketch…………………………………………………………………...iii Dedication……………………………………………………………………………..iv Acknowledgements…………………………………………………………………….v Table of Contents……………………………………………………………………...vi List of Figures………………………………………………………………………...vii List of Schemes………………………………………………………………………...x List of Tables…………………………………………………………………………xii List of Equations……………………………………………………………………..xiii Chapter 1: The Application of Microreactors to Organic Synthesis……………....1 Chapter 2: Improving Solid-Supported Catalyst Productivity by Using a Simplified Packed-Bed Microreactor………………………………....17 Chapter 3: A Biphasic Oxidation of Alcohols to Aldehydes and Ketones Using a Simplified Packed-Bed Microreactor………………………..42 Chapter 4: The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4-Disubstituted 1,2,3-Triazoles…………..61 Chapter 5: The Flow Syntheses of Active Pharmaceutical Ingredients…………..87 Chapter 6: The Continuous Flow Synthesis of Ibuprofen………….………...…113 Chapter 7: Progress Toward Multi-Step Reaction Sequences Using Solid-Supported Catalysis……………………………………137 Appendix 1: Supporting Information for Chapter 2………………………………165 Appendix 2: Supporting Information for Chapter 3………………………………168 Appendix 3: Supporting Information for Chapter 4………………………………171 Appendix 4: Supporting Information for Chapter 6………………………………173 vi LIST OF FIGURES 1.1 Surface area-to-volume ratios of two 1 mL reactors………………………….2 1.2 Temperature profiles for batch and flow reactors…………………………….3 1.3 Mixing profiles for batch and flow reactors…………………………………..5 1.4 Retrosynthetic analysis of the drug naproxcinod……………………………..6 1.5 Ley’s continuous flow synthesis of oxomaritidine……………………………8 1.6 Ley’s continuous flow synthesis of 1,4-disubstituted 1,2,3-triazoles…………9 1.7 Experimental setup for Jensen’s carbamate synthesis in flow………………10 1.8 Cosford’s three-step continuous flow synthesis of 1,2,4-oxadiazoles………12 2.1 Flow reactions with a packed-bed microreactor……………………………..18 2.2 The simplified microreactor setup…………………………………………...22 2.3 Conversion of Knoevenagel condensation vs. residence time………………23 2.4 Conversion of acylation vs. residence time………………………………….26 2.5 Yield from a single-channel AO-TBD packed-bed microreactor…………...27 2.6 Long-term activity of single-channel AO-TBD microreactor……………….28 2.7 Yield from an eight-channel AO-TBD packed-bed microreactor…………...28 2.8 Long-term activity of eight-channel AO-TBD microreactor…………….….29 2.9 Heat exchanger………………………………………………………………30 2.10 Packed-bed microreactor regeneration………………………………………31 3.1 Catalytic cycle of the TEMPO-catalyzed oxidation of alcohols…………….44 3.2 Redox reactions for the generation of the oxoammonium cation……………44 3.3 The simplified microreactor setup…………………………………………...47 3.4 Plug flow and coalescence…………………………………………………...47 3.5 The long-term activity of AO-TEMPO packed-bed microreactors………….52 4.1 Drug derivative synthesis using click chemistry…………………………….62 vii 4.2 Catalytic cycle of the click reaction…………………………………………64 4.3 Conjure Flow Reactor schematic…………………………………………….65 4.4 Copper reactor diskette………………………………………………………66 4.5 Contour plot for the click reaction at 100 ˚C………………………………...68 4.6 Contour plot for the click reaction
Recommended publications
  • WO 2008/096257 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 14 August 2008 (14.08.2008) WO 2008/096257 Al (51) International Patent Classification: 500038 (IN). BURIDIPADU, Sunil Kumar [IN/IN]; C07D 239/42 (2006.01) Aurobindo Pharma Limited, Plot No.2, Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN). (21) International Application Number: MEENAKSHISUNDERAM, Sivakumaran [IN/IN]; PCT/IB2008/000290 Aurobindo Pharma Limited, Plot No.2, Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN). (22) International Filing Date: 4 February 2008 (04.02.2008) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (26) Publication Language: English CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (30) Priority Data: IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, 277/CHE/2007 8 February 2007 (08.02.2007) IN LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, 1121/CHE/2007 29 May 2007 (29.05.2007) IN MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, (71) Applicant (for all designated States except US): AU- SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ROBINDO PHARMA LIMITED [IN/IN]; Plot No.2, ZA, ZM, ZW Maitrivihar, Ameerpet, Andhra Pradesh, Hyderabad 500038 (IN).
    [Show full text]
  • United States Patent Office Paterated Feb
    3,306,895 United States Patent Office Paterated Feb. 28, 1967 1. 2 3,306,895 The compounds of this invention are obtained by treat HETEROCYCLIC DERVATIVES OF TRPHENYL ment of triphenylethylene derivatives of the type: , ETHYLENES, TRIPHENYLETHANES AND TRI PHENYLETHANOLS Edward McCreery Roberts, George Philip Claxton, and 5 Frances Gertrude Fallon, Cincinnati, Ohio, assignors to Richardson-Merrell Inc., New York, N.Y., a corpo ration of Delaware No Drawing. Filed June 27, 1962, Ser. No. 205,551 10 Claims. (C. 260-240) k This invention relates to a series of novel and useful O where R and R' are as previously defined, with an ap compounds and processes for preparing the same. More propriate organometallic derivative such as cy-picolyl particularly, this invention relates to a series of triphenyl lithium (as in Examples 2 and 5), 3-pyridyl lithium (as ethanes, triphenylethylenes, and triphenylethanols, in in Example 6), or 2-pyridyl lithium (as in Examples 1 which one of the phenyl groups is substituted with a pyri and 4). Such treatment is conveniently carried out by dyl or reduced pyridyl ring which is separated from the mixing the reactants in an inert solvent such as ether, aromatic portion of the molecule by an oxygenated alkyl benzene, toluene, or combinations of such inert solvents fragment of one, two or three carbon atoms. The inven at appropriate temperatures chosen in the range of tion also includes nontoxic, water-soluble addition salts, -60° C. to 80° C. The resulting imine is hydrolyzed to quaternary ammonium derivatives and N-oxide deriva the corresponding ketone without being isolated by being tives of the new compounds.
    [Show full text]
  • Benzopinacolate Promoted Radical Carbon-Carbon Bond Forming
    Bis(trimethylstannyl)benzopinacolate Promoted Radical Carbon-Carbon Bond Forming Reactions and Related Studies Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Franklin Lee Seely Graduate Program in Chemistry The Ohio State University 2010 Dissertation Committee: Robert S. Coleman, Co-Advisor David J. Hart, Co-Advisor T. V. RajanBabu Abstract This research has dealt primarily with the development of novel methods for radical carbon-carbon bond formation. A major focus of this research has been the hydrogen atom free generation of trialkyltin radicals. The bulk of this thesis will deal with the use of bis(trimethylstannyl)benzopinacolate 1 in mediating radical reactions. We have demonstrated that these conditions allow a wide variety of inter and intramolecular free radical addition reactions. We have given evidence that these reactions proceed via a novel non-chain free radical mechanism. ii Dedication This thesis is dedicated to Tracy Lynne Court. You have given me the courage to try again. iii Acknowledgments I would like to sincerely thank Dr. David J. Hart for all his help, the countless hours of work he put in, and for making this possible. I would like to thank Dr. Robert S. Coleman for agreeing to act as my advisor, and all the support and guidance he has given. I would like to than Dr. T. V. RajanBabu for reading my thesis and all his thoughtful suggestions. iv Vita Education 1981-1985 ………………………………………………………..B.S., The University
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,800,658 B2 Brugnara Et Al
    USOO6800658B2 (12) United States Patent (10) Patent No.: US 6,800,658 B2 Brugnara et al. (45) Date of Patent: Oct. 5, 2004 (54) SUBSTITUTED DIPHENYL INDANONE, 5,273,992 A 12/1993 Brugnara et al. ........... 514/398 NDANE AND INDOLE COMPOUNDS AND 5,358,959 A 10/1994 Halperin et al. ...... ... 514/396 ANALOGUES THEREOF USEFUL FOR THE 5,430,062 A 7/1995 Cushman et al. ..... ... 514/646 5,512.563 A * 4/1996 Albright et al. ............ 514/217 TREATMENT OF PREVENTION OF 2002/0128256 A1 * 9/2002 Brugnara et al. ...... 514/212.02 DISEASES CHARACTERIZED BY ABNORMAL CELL PROLIFERATION FOREIGN PATENT DOCUMENTS (75) Inventors: Carlo Brugnara, Newton Highlands, DE 37O6427 9/1988 DE 1OOO4654 8/2001 MA (US); Jose Halperin, Brookline, EP O323 740 A2 7/1989 MA (US); Rudolf Fluckiger, Brookline, EP 483632 5/1992 MA (US); Emile M. Bellott, Jr., EP O 583 665 A2 2/1994 Beverly, MA (US); Richard John EP O 636 608 A1 2/1995 Lombardy, Littleton, MA (US); John JP OS 58894 3/1993 J. Clifford, Arlington, MA (US); JP OSOSO771 3/1993 Ying-Duo Gao, Meshanie Station, NJ WO WO 89/08096 9/1989 (US); Reem M. Haidar, Woburn, MA WO WO95/26720 10/1995 (US); Eugene W. Kelleher, Somerville, WO WO 96/08240 3/1996 MA (US); Adel M. Moussa, WO WO 96/08242 3/1996 Burlington, MA (US); Yesh P. WO WO 96/36631 11/1996 Sachdeva, Concord, MA (US); WO WO 99/26624 6/1999 Minghua Sun, Cambridge, MA (US); WO WO O2/32465 4/2002 Heather N.
    [Show full text]
  • Iron-Catalysed Enantioconvergent Suzuki-Miyaura Cross-Coupling to Afford Enantioenriched 1,1-Diarylalkanes
    Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020 Iron-Catalysed Enantioconvergent Suzuki-Miyaura Cross-Coupling to Afford Enantioenriched 1,1-Diarylalkanes Chet C. Tyrol, Nang S. Yone, Connor F. Gallin, Jeffery A. Byers* Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States General Considerations .................................................................................................. 1 Synthetic Procedures ...................................................................................................... 3 Figure S1. Synthesis of cyano-bis(oxazoline) ligands and iron complexes ..................... 3 Synthesis of Diarylalkanes ............................................................................................. 18 Preparation of arylboronic pinacol esters ..................................................................... 30 Preparation of benzylic halides ...................................................................................... 31 Figure S2. Resubjection of enantiomerically-enriched product ......................................... 36 Table S1. Solvent and additive screen .............................................................................. 37 Table S2. Bis(oxazoline) ligand screen ............................................................................. 38 Table S3. Effect of catalyst loading ..................................................................................
    [Show full text]
  • ME Manning Et Al., Chem. Abstract 94.102538, 1981
    USOO6992O79B2 (12) United States Patent (10) Patent No.: US 6,992,079 B2 Brugnara et al. (45) Date of Patent: *Jan. 31, 2006 (54) SUBSTITUTED 4,006,023 A 2/1977 McLaughlin et al. ....... 96/90 R 11-PHENYL-DBENZAZEPINE COMPOUNDS 4,806,685 A 2/1989 Abraham et al. ........... 563/324 USEFUL FOR THE TREATMENT OR 5,273,992 A 12/1993 Brugnara et al. ..... ... 514/398 5,358,959 A 10/1994 Halperin et al. ...... ... 514/396 ERR2E, RMAL cell 5,430,062. A 7/1995 Cushman et al. ........... 514/646 5,512.563 A * 4/1996 Albright et al. ............ 514/217 PROLIFERATION 6,063,921 A 5/2000 Moussa et al. (75) Inventors: Carlo Brugnara, Newton Highlands, 6,291,4496,201,120 B1 9/20013/2001 Ms t alal. MA (US); Jose Halperin, Brookline, 6,534,497 B1 * 3/2003 Brugnara et al. ........... 514/217 MA (US); Rudolf Fluckiger, Brookline, 2001/0007030 A1 7/2001 Moussa et al. MA (US); Emile M. Bellott, Jr., Beverly, MA (US); Richard John FOREIGN PATENT DOCUMENTS Lombardy, Littleton, MA (US); John EP O 323 740 A2 7/1989 J. Clifford, Arlington, MA (US); EP O 583 665 A2 2/1994 Ying-Duo Gao, Edison, NJ (US); Reem EP O 636 608 A1 2/1995 M. Haidar, Woburn, MA (US); Eugene JP OS 58894 3/1993 W. Kelleher, Medford, MA (US); Adel WO WO95/26720 10/1995 M. Moussa, Burlington, MA (US); WO WO 96/08240 3/1996 Yesh P. Sachdeva, Concord, MA (US); W W 't f1. Minghua Sun, Libertyville, IL (US); Heather N.
    [Show full text]
  • Chemfiles 9.3 Cover.Indd 1 6/18/2009 7:49:52 AM Vol
    Vol. 9, No. 3 Chiral Building Blocks Features include: A–Z Product Listings Heterocyclic Building Blocks Organic Building Blocks (S)-(–)-Glycidol: chiral epoxide building block used in synthesis of many pharmaceuticals and natural products 70978 ChemFiles 9.3 cover.indd 1 6/18/2009 7:49:52 AM Vol. 9 No. 3 Introduction Asymmetric synthesis remains a challenge to synthetic chemists as Aldrich Chemical Co., Inc. the demand for enantiomerically pure compounds continues to Sigma-Aldrich Corporation increase. Whether the building blocks are used in the development 6000 N. Teutonia Ave. of new and exciting chiral auxiliaries, ligands, or for obtaining Milwaukee, WI 53209, USA advanced and enantiomerically enriched druglike molecules, research scientists continually need access to a vast array of novel chiral building blocks and architectures to achieve success. To Place Orders In this edition of ChemFiles, we have endeavored to provide a comprehensive listing of over 1000 chiral building blocks. Within Telephone 800-325-3010 (USA) each section of this issue, products are listed by increasing FAX 800-325-5052 (USA) carbon content. Introduction Mark Redlich Sigma-Aldrich is lists over 5000 chiral products for the successful Product Manager Customer & Technical Services construction of complex asymmetric architectures—for a complete listing of products related to chiral chemistry and asymmetric synthesis, please visit us at Customer Inquiries 800-325-3010 sigma-aldrich.com/chiral. If you are unable to find a product for Technical Service 800-231-8327 your research, “Please Bother Us” at [email protected] or contact your local SAFC® 800-244-1173 Sigma-Aldrich office.
    [Show full text]
  • Adsorption Behavior of the Primary, Secondary and Tertiary Alkyl, Allyl and Aryl Alcohols Over Nanoscale (1 0 0) Surface of Γ-Alumina
    Adsorption Behavior of the Primary, Secondary and Tertiary Alkyl, Allyl and Aryl Alcohols Over Nanoscale (1 0 0) Surface of γ-Alumina Mehdi Zamani1,2*, Hossein A. Dabbagh2* 1) Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran 2) Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran Abstract In this study, the adsorption behavior of the primary, secondary and tertiary alcohols over nanoscale (1 0 0) surface of defect spinel γ-alumina was investigated with the aid of density functional theory (DFT) at BLYP/DNP level of calculation. The influence of different substituents including alkyl, cycloalkyl, allyl and aryl were analyzed for free and adsorbed alcohols to shed light the adsorption selectivity of these compounds over γ-alumina surface. These results indicate that more branches at position of alcohol favor the adsorption, while a decrease in adsorption energy is achieved for the alcohols containing the substituents at the β position. The tertiary alcohols are adsorbed over the surface stronger than secondary and primary alcohols. Alcohols with larger alkyl chains have greater adsorption energies. Also the aryl alcohols are adsorbed over the surface better than the alkyl and allyl moieties. Keywords: Nanoscale surface of γ-Alumina; Alcohol; Molecular adsorption; DFT © 2014 Published by Journal of Nanoanalysis. 1. Introduction Alumina is well known catalyst by both acidic and basic properties. In recent years, many experimental and theoretical works have studied the structure, reactivity and selectivity of γ-alumina especially at nanoscale (1-23). Theoretical investigations of the adsorption on γ-alumina have focused mostly on Lewis acidity of the surface (1-4), and the reactivity with water (5-11), hydrogen sulfide (5,10,12), carbon monoxide (5,10,13), ammonia (6), pyridine (4,6), hydrogen chloride (7), alkenes (14,15), alkanes (16), alcohols (17-23) and ethers (23).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,349,977 B2 Koenig Et Al
    US008349977B2 (12) United States Patent (10) Patent No.: US 8,349,977 B2 Koenig et al. (45) Date of Patent: Jan. 8, 2013 (54) PROCESS FOR PREPARING W. W338 A .289 SETITY ISOBUTENE HOMO- OR WO WO 2010, 139684 A1 12/2010 OTHER PUBLICATIONS (75) Inventors: Hannah Maria Koenig, Mannheim (DE); Klaus Muellbach, Gruenstadt Edward C. Leonard. “High Polymers'. Wiley-Interscience, A Divi (DE); Matthias Kiefer, Ludwigshafen sion of John Wiley & Sons, Inc., vol. XXIV. (part 2), 1971, 1 front (DE); Sergei V. Kostjuk, Minsk (BY); page, pp. 713-733. 66/ - - - - - Irina Vasilenko, Minsk (BY): James D. Burrington, et al., Cationic polymerization using s s heteropolyacid salt catalysts'. Topics in Catalysis, vol. 23, Nos. 1-4. Alexander Frolov, Svisloch (BY) Aug. 2003, pp. 175-181. Sergei V. Kostjuk, et al., “Novel Initiating system based on AlCl (73) Assignee: BASFSE, Ludwigshafen (DE) etherate for quasiliving cationic polymerization of styrene'. Polymer Bulletin, vol. 52, 2004, pp. 227-234. (*) Notice: Subject to any disclaimer, the term of this Sergei V. Kostjuk, et al., “Cationic Polymerization of Styrene in patent is extended or adjusted under 35 Solution and Aqueous Suspension Using B(C6F5) as a Water-Toler U.S.C. 154(b) by 0 days. ant Lewis Acid', Macromolecules, vol.39, No. 9, Apr. 8, 2006, pp. 3110-3113. (21) Appl. No.: 13/029,413 U.S. Appl. No. 13/126,857, filed Apr. 29, 2011, Hildebrandt, et al. U.S. Appl. No. 13/305,132, filed Nov. 28, 2011, Koenig, et al. (22) Filed: Feb. 17, 2011 U.S. Appl. No. 13/305,283, filed Nov.
    [Show full text]
  • Spectra Library Index SDBS Library
    S p e c t r a L i b r a r y I n d e x SDBS Library KBr ライブラリー名:スタンダードライブラリーKBr 商品番号:40001-40 株式会社 エス・ティ・ジャパン 〒103-0014 東京都中央区日本橋蛎殻町 1-14-10 Tel: 03-3666-2561 Fax:03-3666-2658 http://www.stjapan.co.jp 1 【販売代理店】(株)テクノサイエンス Tel:043-206-0155Fax:043-206-0188 http://www.techno-lab-co.jp/ (((3,4-DIHYDROXY-9,10-DIOXO-9,10-DIHYDRO-2-ANTHRYL)METHYL)IMINO)DIACETIC ACID (((N-BENZYLOXYCARBONYL-L-PHENYLALANYL)-O-ACETYL-L-THREONYL)-L-PROLYL-L-PHENYLALANYL)-N(OMEGA)-NITRO-L-ARGININE 4-NITROBENZYL ESTER ((1,2-DIETHYLETHYLENE)BIS(P-PHENYLENE))DIACETATE ((1-BENZOTRIAZOLYL)OXY)TRIS(DIMETHYLAMINO)PHOSPHONIUM HEXAFLUOROPHOSPHATE ((2-(3-BENZYLSULFONYL-4-METHYLCYCLOHEXYL)PROPYL)SULFONYLMETHYL)BENZENE ((2,4,6-TRIOXOHEXAHYDRO-5-PYRIMIDINYL)IMINO)DIACETIC ACID ((2-BENZOTHIAZOLYL)AMINOMETHYLENE)MALONONITRILE ((2-CARBOXYETHYL)IMINO)DIACETIC ACID ((2-CYANOETHYLAMINO)(3-INDOLYL)METHYLENE)MALONONITRILE ((2-HYDROXYETHYL)IMINO)DIACETIC ACID ((2-HYDROXYETHYLAMINO)(3-INDOLYL)METHYLENE)MALONONITRILE ((2-NITROBENZYL)IMINO)DIACETIC ACID ((2-OXOPROPYL)IMINO)DIACETIC ACID ((2-PYRIDYLAMINO)METHYLENE)MALONONITRILE ((2-QUINOLINYL)AMINOMETHYLENE)MALONONITRILE ((2-SULFOETHYL)IMINO)DIACETIC ACID ((2-THIAZOLYLAMINO)METHYLENE)MALONONITRILE ((3-(1-BROMO-1-METHYLETHYL)-7-OXO-1,3,5-CYCLOHEPTATRIEN-1-YL)OXY)DIFLUOROBORANE ((3-INDOLYL)(1-PYRROLIDINYL)METHYLENE)MALONONITRILE ((3-INDOLYL)(METHYLTHIO)METHYLENE)MALONONITRILE ((3-INDOLYL)MORPHOLINOMETHYLENE)MALONONITRILE ((3-INDOLYL)PIPERIDINOMETHYLENE)MALONONITRILE ((3-METHYL-2-PYRIDYLAMINO)METHYLENE)MALONONITRILE ((4-METHYL-2-PYRIDYLAMINO)METHYLENE)MALONONITRILE
    [Show full text]
  • Part I Asymmetric Reduction of Ketones with the Grignard Reagent from R-1
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1970 PART I ASYMMETRIC REDUCTION OF KETONES WITH THE GRIGNARD REAGENT FROM R-1-BROMO-2-PHENYLETHANE-1,1,2-DEUTERIUM(3) PART II ELECTROPHILICALLYASSISTED NUCLEOPHILIC OPENING OF OPTICALLY ACTIVE STYRENE-OXIDE JOSEPH EDWARD TOMASZEWSKI Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation TOMASZEWSKI, JOSEPH EDWARD, "PART I ASYMMETRIC REDUCTION OF KETONES WITH THE GRIGNARD REAGENT FROM R-1-BROMO-2-PHENYLETHANE-1,1,2-DEUTERIUM(3) PART II ELECTROPHILICALLYASSISTED NUCLEOPHILIC OPENING OF OPTICALLY ACTIVE STYRENE-OXIDE" (1970). Doctoral Dissertations. 925. https://scholars.unh.edu/dissertation/925 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PART I. ASYMMETRIC REDUCTION OF KETONES WITH THE GRIGNARD REAGENT FROM R-1 -BROMO- 2 -PHENYLETHANE-1,1,2-d s PART II. ELECTROPHILICALLY ASSISTED NUCLEOPHILIC OPENING OF OPTICALLY ACTIVE STYRENE OXIDE by JOSEPH EDWARD TOMASZEWSKI B. S., University of Scranton, 1965 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry March, 1970 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This thesis has been examined and approved. ?s D. Morrison, Research Director rbciate Professor of Chemistry Rob'er't E .
    [Show full text]
  • Photochemical Synthesis of Β-Lactones and Β- Lactams William Raymond Adams Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Photochemical synthesis of β-lactones and β- lactams William Raymond Adams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Adams, William Raymond, "Photochemical synthesis of β-lactones and β-lactams " (1967). Retrospective Theses and Dissertations. 3988. https://lib.dr.iastate.edu/rtd/3988 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiihned exactly as received 68—2796 ADAMS, William Raymond, 1936- PHOTOCHEMICAL SYNTHESIS OF /3 -LACTONES AND J3 -LACTAMS. Iowa State University, Ph.D., 1967 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan 0? /3-LAC20KZ3 AND /?-LACTAMS by '.Villiam RayTiOnd Adar;.3 A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of •The Requirements for the Degree of aOCTOR 0? PHII030PHY \ %ajor Subject: Organic Che:nis":ry Approved: Signature was redacted for privacy. In Chi or \/oj.'K Signature was redacted for privacy. Signature was redacted for privacy. Iowa Sta":e Univers Of Science and Technology Ames, lov/a 1967
    [Show full text]