Biodiversity Series Background Document for Seamounts 2010

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Series Background Document for Seamounts 2010 Background Document for Seamounts Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This report has been prepared by Ricardo Serrão Santos, Fernando Tempera and Telmo Morato (Department of Oceanography and Fisheries of the University of the Azores) for Portugal as lead country [[email protected]]. Cover photograph provided by Bhavani Narayanaswamy showing an orange bushy antipatharian coral (Leiopathes sp.) growing on silty bedrock face can be seen in the middle of the photograph. Many small decapod crustaceans (possibly galatheids) and tiny ophiuroids are also seen amongst the branches. This photograph was taken as part of the UK Department of Trade and Industry’s offshore energy Strategic Environmental Assessment programme. © Crown Copyright, all rights reserved. 2 Contents Background Document for Seamounts................................................................................................4 Executive Summary ...........................................................................................................................4 Récapitulatif .......................................................................................................................................4 1. Background information...............................................................................................................5 Nomination...................................................................................................................................5 Definition for habitat mapping......................................................................................................5 2. Original Evaluation against the Texel-Faial selection criteria......................................................6 OSPAR Regions and Dinter biogeographic zones where the habitat occurs .............................6 OSPAR Regions where the habitat is under threat and/or in decline .........................................7 General........................................................................................................................................7 Original Evaluation against the Texel-Faial Criteria for which the habitat was included on the OSPAR List ......................................................................................................................8 Relevant additional considerations............................................................................................10 3. Current status of the habitat ......................................................................................................10 Distribution in the OSPAR maritime area ..................................................................................10 Extent of the habitat (current/trends/future prospects)..............................................................11 Condition (current/trends/future prospects)...............................................................................11 Limitations in knowledge ...........................................................................................................12 4. Evaluation of threats and impacts .............................................................................................12 5. Existing Management Measures ...............................................................................................14 6. Conclusion on overall status......................................................................................................15 7. Action to be taken by OSPAR ...................................................................................................16 Action/measures that OSPAR could take, subject to OSPAR agreement ................................16 Brief summary of the proposed monitoring system...................................................................20 Annex 1: Overview of data and information provided by Contracting Parties ..............................21 Annex 2: Detailed description of the proposed monitoring and assessment strategy ................24 Rationale ..........................................................................................................................................24 Use of existing monitoring programmes ..........................................................................................24 Synergies with monitoring of other species or habitats ...................................................................24 Assessment criteria..........................................................................................................................24 Techniques/approaches...................................................................................................................24 Selection of monitoring locations .....................................................................................................26 Timing and Frequency of monitoring ...............................................................................................26 Annex 3: References............................................................................................................................27 3 Background Document for Seamounts Background Document for Seamounts Executive Summary This Background Document for Seamounts has been developed by OSPAR following the inclusion of this habitat on the OSPAR List of threatened and/or declining species and habitats (OSPAR agreement 2008-6). The document provides a compilation of the reviews and assessments that have been prepared concerning this habitat since the agreement to include it in the OSPAR List in 2003. The original evaluation used to justify the inclusion of seamounts in the OSPAR List is followed by an assessment of the most recent information on its status (distribution, extent, condition) and key threats prepared during 2009-2010. Chapter 7 provides recommendations for the actions and measures that could be taken to improve the conservation status of the habitat. In agreeing to the publication of this document, Contracting Parties have indicated the need to further review these proposals. Publication of this background document does not, therefore, imply any formal endorsement of these proposals by the OSPAR Commission. On the basis of the further review of these proposals, OSPAR will continue its work to ensure the protection of seamounts, where necessary in cooperation with other competent organisations. This background document may be updated to reflect further developments or further information on the status of the habitat which becomes available. Récapitulatif Le présent document de fond sur les monts sous-marins a été élaboré par OSPAR à la suite de l’inclusion de cet habitat dans la liste OSPAR des espèces et habitats menacés et/ou en déclin (Accord OSPAR 2008-6). Ce document comporte une compilation des revues et des évaluations concernant cet habitat qui ont été préparées depuis qu’il a été convenu de l’inclure dans la Liste OSPAR en 2003. L’évaluation d’origine permettant de justifier l’inclusion des monts sous-marins dans la Liste OSPAR est suivie d’une évaluation des informations les plus récentes sur son statut (distribution, étendue et condition) et des menaces clés, préparée en 2009-2010. Le chapitre 7 fournit des propositions d’actions et de mesures qui pourraient être prises afin d’améliorer l’état de conservation de l’habitat. En se mettant d’accord sur la publication de ce document, les Parties contractantes ont indiqué la nécessité de réviser de nouveau ces propositions. La publication de ce document ne signifie pas, par conséquent que la Commission OSPAR entérine ces propositions de manière formelle. A partir de la nouvelle révision de ces propositions, OSPAR poursuivra ses travaux afin de s’assurer de la protection des monts sous-marins le cas échéant avec la coopération d’autres organisations compétentes. Ce document de fond pourra être actualisé pour tenir compte de nouvelles avancées ou de nouvelles informations qui deviendront disponibles sur l’état de l’habitat. 4 OSPAR Commission 2010 1. Background information Nomination Seamounts EUNIS Code: A6.72 Definition for habitat mapping OSPAR has defined seamounts as undersea mountains whose summits rise more than 1000 metres above the surrounding sea floor (Menard, 1964 in Rogers, 1994). Seamounts can be a variety of shapes, but are generally conical with a circular, elliptical or more elongated base. Seamounts are usually
Recommended publications
  • The Fish Fauna of Ampe`Re Seamount (NE Atlantic) and the Adjacent
    Helgol Mar Res (2015) 69:13–23 DOI 10.1007/s10152-014-0413-4 ORIGINAL ARTICLE The fish fauna of Ampe`re Seamount (NE Atlantic) and the adjacent abyssal plain Bernd Christiansen • Rui P. Vieira • Sabine Christiansen • Anneke Denda • Frederico Oliveira • Jorge M. S. Gonc¸alves Received: 26 March 2014 / Revised: 15 September 2014 / Accepted: 24 September 2014 / Published online: 2 October 2014 Ó Springer-Verlag Berlin Heidelberg and AWI 2014 Abstract An inventory of benthic and benthopelagic stone’’ hypothesis of species dispersal, some differences fishes is presented as a result of two exploratory surveys can be attributed to the local features of the seamounts. around Ampe`re Seamount, between Madeira and the Por- tuguese mainland, covering water depths from 60 to Keywords Deep sea Á Fish distribution Á Ichthyofauna Á 4,400 m. A total of 239 fishes were collected using dif- Seamounts Á Zoogeography ferent types of sampling gear. Three chondrichthyan spe- cies and 31 teleosts in 21 families were identified. The collections showed a vertical zonation with little overlap, Introduction but indications for an affinity of species to certain water masses were only vague. Although most of the species Due to their vertical range and habitat diversity, seamounts present new records for Ampe`re Seamount, all of them often support high fish diversity, as compared to the sur- have been known for the NE Atlantic; endemic species rounding ocean, and some are known as hotspots of were not found. The comparison with fish communities at endemic species (e.g. Shank 2010; Stocks et al. 2012). other NE Atlantic seamounts indicates that despite a high Seamounts are considered to act as ‘‘stepping stones’’ for ichthyofaunal similarity, which supports the ‘‘stepping species dispersal (Almada et al.
    [Show full text]
  • A Census of Meddies Tracked by Floats
    Progress in Oceanography 45 (2000) 209–250 A census of Meddies tracked by floats P.L. Richardson a,*, A.S. Bower a, W. Zenk b a Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA b Institut fu¨r Meereskunde, an der Universita¨t Kiel, Kiel, Germany Abstract Recent subsurface float measurements in 27 Mediterranean Water eddies (Meddies) in the Atlantic are grouped together to reveal new information about the pathways of these energetic eddies and how they are often modified and possibly destroyed by collisions with seamounts. Twenty Meddies were tracked in the Iberian Basin west of Portugal, seven in the Canary Basin. During February 1994 14 Meddies were simultaneously observed, 11 of them in the Iberian Basin. Most (69%) of the newly formed Meddies in the Iberian Basin translated southwestward into the vicinity of the Horseshoe Seamounts and probably collided with them. Some Meddies (31%) passed around the northern side of the seamounts and translated southw- estward at a typical velocity of 2.0 cm/s into the Canary Basin. Some Meddies observed there were estimated to be up to ෂ5 yr old. Four Meddies in the Canary Basin collided with the Great Meteor Seamounts and three Meddies were inferred to have been destroyed by the collision. Overall an estimated 90% of Meddies collided with major seamounts. The mean time from Meddy formation to a collision with a major seamount was estimated to be around 1.7 yr. Combined with the estimated Meddy formation rate of 17 Meddies/yr from previous work, this suggests that around 29 Meddies co-exist in the North Atlantic.
    [Show full text]
  • The 1755 Lisbon Earthquake
    Aquifer Sensitivity to Earthquakes: The 1755 Lisbon Earthquake Key Points: Andrés Sanz de Ojeda1 , Iván Alhama2, and Eugenio Sanz2 • The recession coefficient α can be used as a parameter to measure 1Departamento de Ingeniería Minera y Civil, Área de Ingeniería del Terreno, Escuela de Ingenieros de Caminos y Minas, sensitivity of aquifers to earthquakes 2 • The hydrogeological phenomena Universidad Politécnica de Cartagena, Cartagena, Spain, Departamento de Ingeniería y Morfología del Terreno, Escuela induced by the 1755 Lisbon Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain earthquake are described • The influence of the regional fractures, lithology, and recession The development of a theoretical analytical model leads us to consider the recession fi Abstract coef cients in these hydrogeological fi phenomena is analyzed coef cient as a useful hydrological parameter for studying the hydraulic impacts of an earthquake on spring flow in terms of the increase of persistent discharges and the overall alteration of springs. Both the inertia of the aquifer emptying and the increased pore pressure in the lower part of the aquifer caused by the earthquake contribute to maintaining the discharge of persistent springs. Abundant information on the hydrological phenomena induced or modified by the 1755 Lisbon earthquake (M ∈ [8,9]) and its relationship with present‐day knowledge of the geology and hydrogeology of Portugal and Spain, as Correspondence to: fl E. Sanz, well as Spanish spring statistics, have allowed us to identify the factors that most in uence the [email protected] hydraulic sensitivity of aquifers to that earthquake: regional faults, geological boundaries between large geological units, the granite lithology, and aquifers with high recession coefficients.
    [Show full text]
  • Seismic Images and Magnetic Signature of the Late Jurassic to Early Cretaceous Africa–Eurasia Plate Boundary Off SW Iberia
    Geophys. J. Int. (2004) 158, 554–568 doi: 10.1111/j.1365-246X.2004.02339.x Seismic images and magnetic signature of the Late Jurassic to Early Cretaceous Africa–Eurasia plate boundary off SW Iberia M. Rovere,1,2 C. R. Ranero,3 R. Sartori,† L. Torelli4 and N. Zitellini2 1Dipartimento di Scienze della Terra e Geologico-Ambientali, Universit`a di Bologna, Via Zamboni 67, 40120 Bologna, Italy. E-mail: [email protected] 2Istituto di Scienze MARine, Sezione di Geologia Marina, CNR, Via P.Gobetti 101, 40129 Bologna, Italy 3IFM-GEOMAR, Leibniz-Institute f¨ur Meereswissenschaften, Wischhofstrasse 1–3, D24148 Kiel, Germany 4Dipartimento di Scienze della Terra, Parco Area delle Scienze 157, Universit`a di Parma, Italy Accepted 2004 April 5. Received 2004 February 6; in original form 2002 November 22 SUMMARY Over the last two decades numerous studies have investigated the structure of the west Iberia continental margin, a non-volcanic margin characterized by a broad continent–ocean transition (COT). However, the nature and structure of the crust of the segment of the margin off SW Iberia is still poorly understood, because of sparse geophysical and geological data coverage. Here we present a 275-km-long multichannel seismic reflection (MCS) profile, line AR01, acquired in E–W direction across the Horseshoe Abyssal Plain, to partially fill the gap of information along the SW Iberia margin. Line AR01 runs across the inferred plate boundary between the Iberian and the African plates during the opening of the Central Atlantic ocean. The boundary separates crust formed during or soon after continental rifting of the SW Iberian margin from normal seafloor spreading oceanic crust of the Central Atlantic ocean.
    [Show full text]
  • METEOR-Berichte Mid-Atlantic Expedition 2003-2004 Cruise No
    METEOR-Berichte Mid-Atlantic Expedition 2003-2004 Cruise No. 60, Leg 1 – 5 November 11., 2003 – April 15., 2004 Kiel (Germany) –Funchal - Fort-de-France - Lisbon (Portugal) Autoren: D. Wallace, B. Christansen, J. Phipps-Morgan, Th. Kuhn, U. Send, Editorial Assistance: Senatskommission für Ozeanographie der Deutschen Forschungsgemeinschaft MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen Leitstelle Deutsche Forschungsschiffe Institut für Meereskunde der Universität Hamburg 2011 The METEOR-Berichte are published at irregular intervals. They are working papers for people who are occupied with the respective expedition and are intended as reports for the funding institutions. The opinions expressed in the METEOR-Berichte are only those of the authors. The METEOR expeditions are funded by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF). The reports are available in PDF format from http://www.dfg-ozean.de/. Editor: DFG Senatskommission für Ozeanographie c/o MARUM – Zentrum für Marine Umweltwissenschaften Universität Bremen Leobener Strasse 28359 Bremen Authors: Dr. Bernd Christiansen Universität Hamburg Telefon: +49(0)40-42838-6670 Institut für Hydrobiologie und Telefax: +49(0)40-42838-6696 Fischereiwissenschaft e-mail: [email protected] Zeiseweg 9, D-22765 Hamburg / Germany Prof. Dr. Jason Phipps Morgan GEOMAR Telefon: +49(0)431-600 2272 Forschungszentrum für Telefax: +49(0)431-600 2922 Marine Geowissenschaften e-mail: [email protected] Abt. Marine Umweltgeologie Wischhofstr. 1-3 24148 Kiel / Germany Dr. Thomas Kuhn Telefon: +49/(0)3731-393398 Department of Economic Geology and Telefax: +49/(0)3731-392610 Leibniz Lab. for Applied Marine Research e-mail: [email protected] Institute of Mineralogy Freiberg University of Mining and Technology Brennhausgasse 14 D-09596 Freiberg / Germany Prof.
    [Show full text]
  • Earth and Planetary Science Letters Destructive Episodes And
    Earth and Planetary Science Letters 559 (2021) 116772 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Destructive episodes and morphological rejuvenation during the lifecycles of tectonically active seamounts: Insights from the Gorringe Bank in the NE Atlantic ∗ Davide Gamboa a, , Rachid Omira a,b, Aldina Piedade a, Pedro Terrinha a,b, Cristina Roque b,c, Nevio Zitellini d a Instituto Português do Mar e de Atmosfera – IPMA, I.P.; Rua C do Aeroporto, 1749-077 Lisbon, Portugal b Instituto D. Luiz – IDL; Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisbon, Portugal c Estrutura de Missão de Extensão da Plataforma Continental – EMEPC; Rua Costa Pinto, n. 165, 2770-047 Paço de Arcos, Portugal d Istituto di Scienze Marine (ISMAR), Via Gobetti 101, 40129, Bologna, Italy a r t i c l e i n f o a b s t r a c t Article history: Seamounts are spectacular bathymetric features common within volcanic and tectonically active Received 25 July 2020 continental margins. During their lifecycles, they evolve through stages of construction and destruction. Received in revised form 2 December 2020 The latter are marked by variable magnitude flank collapses that often interrupt the evolution of Accepted 19 January 2021 seamounts and constitute a major source of hazard. The Southwest Iberian Margin is a tectonically Available online xxxx complex region with moderate to high seismicity where numerous seamounts occur. On such a setting, Editor: J.P. Avouac earthquake-triggered collapses on seamount flanks are common, leading to the deposition of Mass- Keywords: Transport Deposits (MTDs) on the surrounding abyssal plains.
    [Show full text]
  • The Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank
    THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK Introduction 4 •Oceana expedition and studies 6 •Geographical location 7 1 Geology 8 •Geomorphology, topography and petrology 8 •Seismic activity and tsunamis 12 2 Oceanography 17 •Currents and seamounts 17 •The Mediterranean influence 20 oMeddies 21 •The Atlantic influence 22 •Oxygen levels 23 3 Biology 24 •Endemisms and Biodiversity 27 •List of species 31 •Peculiarities of some of the species on the Gorringe Bank 35 oDescription of the ecosystem observed 36 4 Threats to the biodiversity of Gorringe: fishing 41 5 Conclusions and proposals 46 GLOSSARY 50 BIBLIOGRAPHY 58 3 LAS MONTAÑAS SUBMARINAS DE GORRINGE Introduction A seamount is regarded as a geological elevation that reaches a minimum of 1,000 metres in height and can consist of very different physical, geological and chemical pro- perties. Therefore, seamounts can only exist where there are sea beds more than one kilo- metre deep, or, which is one and the same thing, over 60%–62% of the land surface1. There are also thousands of smaller elevations that tend to be known as abyssal hills (when they are less than 500 metres) or mounds (between 500 and 1,000 metres). Whether in isolation or as part of extensive ranges, there are possibly more than 100,000 sea- mounts around the world2. At present, close to 30,000 of them have been identified, of which around 1,000 can be found in the Atlantic Ocean3, where in addition the largest range in the world can be found; the Mid–Atlantic Ridge, which stretches from Iceland to the Antarctic.
    [Show full text]
  • Variability in Growth Rates of Long-Lived Black Coral Leiopathes Sp
    Vol. 473: 189–199, 2013 MARINE ECOLOGY PROGRESS SERIES Published January 21 doi: 10.3354/meps10052 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores M. Carreiro-Silva1,*, A. H. Andrews2, A. Braga-Henriques1, V. de Matos1, F. M. Porteiro1, R. S. Santos1 1Centre of IMAR of the University of the Azores, Department of Oceanography and Fisheries/UAz & LARSyS Associated Laboratory, Rua Prof. Dr Frederico Machado, 4, PT-9901-862 Horta, Azores, Portugal 2NOAA Fisheries - Pacific Islands Fisheries Science Center, 99-193 Aiea Heights Drive 417 Aiea, Hawaii 96701, USA ABSTRACT: Five colonies of black coral Leiopathes sp. were collected as bycatch from depths of 293 to 366 m from the Condor, Açor, and Voador seamounts (Azores region). The colonies had axial diameters between 4.9 and 33.1 mm and heights between 43 and 175 cm. Their ages and radial growth rates were estimated using radiocarbon dating. Results indicated that the smallest and largest colonies had similar radial growth rates of 5 to 7 µm yr−1, whereas the other 3 colonies had grown more rapidly by a factor of 3 to 5 at ~20 to 30 µm yr−1. Colony lifespan ranged between 265 ± 90 and 2320 ± 90 yr. Fine-scale sampling along a radial transect from the edge to the center of the 2320 yr old Leiopathes sp. revealed variable growth rates throughout the colony lifespan. Slower radial growth rates of ~4 to 5 µm yr−1 were recorded over the initial 1600 yr and the last 300 yr of its life span, and a period of more rapid growth (20 µm yr−1) over the intermediate 400 yr of its life.
    [Show full text]
  • ASLO 2005 Summer Meeting Program
    2005 ASLO Summer Meeting www.aslo.org/santiago2005PROGRAM Conference Program 1 ASLO 2005 ASLO Summer Meeting Contents A Pilgrimage Through Global Aquatic Sciences ............................................................................................................................................................... 3 Message from the Co-Chairs .......................................................................................................................................................................................... 3 Plenary Addresses and Award Recipient Talks ................................................................................................................................................................. 4 The Scientific Program .................................................................................................................................................................................................... 8 About Santiago de Compostela ...................................................................................................................................................................................... 9 About the Conference Meeting Site ................................................................................................................................................................................ 9 Conference Committee .................................................................................................................................................................................................
    [Show full text]
  • Program and Abstract Book
    11th International Deep-Sea Biology Symposium NATIONAL OCEANOGRAPHY cENTRE, Southampton, UK 9 - 14 July 2006 BOOK OF ABSTRACTS Compiled by: Sven Thatje Paul Tyler Pam talbot tammy horton Lis Maclaren Sarah Murty Nina Rothe david billett 11th International Deep-Sea Biology Symposium National Oceanography Centre, Southampton Southampton Solent University Conference Centre Southampton UK 9 – 14 July 2006 Symposium Organising Committee • Professor Paul Tyler (Chair), NOC DEEPSEAS Group, UK. • Mrs Pam Talbot (Secretary), George Deacon Division, NOC, UK. • Dr David Billett, NOC DEEPSEAS Group, UK. • Dr Sven Thatje, NOC DEEPSEAS Group, UK. • Professor Monty Priede, OceanLab, University of Aberdeen, UK. • Dr Gordon Paterson, The Natural History Museum, London, UK. • Professor George Wolff, University of Liverpool, UK. • Dr Kerry Howell, Joint Nature Conservation Committee, UK. • Dr Alex Rogers, British Antarctic Survey, Cambridge, UK. • Dr Eva Ramirez Llodra, NOC DEEPSEAS/CSIC Barcelona, Spain. • Dr Phil Bagley, OceanLab, University of Aberdeen, UK. • Dr Maria Baker, NOC DEEPSEAS Group, UK. • Dr Brian Bett, NOC DEEPSEAS Group, UK. • Dr Jon Copley, NOC DEEPSEAS Group, UK. • Dr Adrian Glover, The Natural History Museum, London, UK. • Professor Andrew Gooday, NOC DEEPSEAS Group, UK. • Dr Lawrence Hawkins, NOC DEEPSEAS Group, UK. • Dr Tammy Horton, NOC DEEPSEAS Group, UK. • Dr Ian Hudson, NOC DEEPSEAS Group, UK. • Dr Alan Hughes, NOC DEEPSEAS Group, UK. • Dr Bhavani Narayanaswamy, Scottish Association for Marine Science, Oban, UK. • Dr Martin Sheader, NOC DEEPSEAS Group, UK. • Miss Michelle Sterckx, Southampton Solent University Conference Centre, UK. • Dr Ben Wigham, OceanLab, University of Aberdeen, UK. • Supported by the DEEPSEAS post-graduate/doctorate team: Lis Maclaren, Sarah Murty, Nina Rothe, Tania Smith, John Dinley, Chris Hauton, Jon Copley, Hannah Flint, Abigail Pattenden, Emily Dolan, Teresa Madurell, Teresa Amaro, Janne Kaariainen, Daniel Jones, Kate Larkin, Eulogio Soto.
    [Show full text]
  • Structure and Origin of the J Anomaly Ridge, Western North Atlantic Ocean
    JOURNALOF GEOPHYSICALRESEARCH, VOL. 87, NO. Bll, PAGES9389-9407, NOVEMBER 10, 1982 Structure and Origin of the J Anomaly Ridge, Western North Atlantic Ocean BRIAN E. TUCHOLKE Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 WILLIAM J. LUDWIG 1 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 The J Anomaly Ridge is a structural ridge or step in oceanic basementthat extends southwestfrom the easternend of the Grand Banks. It lies beneaththe J magneticanomaly at the youngend (M-4 to M- 0) of the M series magnetic anomalies. Its structural counterpart beneath the J anomaly in the eastern Atlantic is the Madeira-Tore Rise, but this feature has been overprinted by post-middle Cretaceous deformation and volcanism. In order to study the origin and evolution of the J Anomaly Ridge- Madeira-Tore Rise system, we obtained seismicrefraction and multichannel reflection profiles across the J Anomaly Ridge near 39øN latitude. The western ridge flank consistsof a seriesof crustal blocks downdropped along west-dipping normal faults, but the eastern slope to younger crust is gentle and relatively unfaulted. The western flank also is subparallelto seafloorisochrons, becoming younger to the south. Anomalously smooth basement caps the ridge crest, and it locally exhibits internal, eastward-dippingreflectors similar in configurationto those within subaeriallyemplaced basalt flows on Iceland. When isostaticallycorrected for sedimentload, the northern part of the J Anomaly Ridge has basementdepths about 1400 m shallower than in our study area, and deep sea drilling has shown that the northern ridge was subaeriallyexposed during the middle Cretaceous.We suggestthat most of the system originated under subaerialconditions at the time of late-stagerifting between the adjacent Grand Banks and Iberia.
    [Show full text]
  • Maquetación 1
    Articulo 9_ART. El material tipo de la 25/06/15 08:19 Página 483 Vázquez, J.T., Alonso, B., Fernández-Puga, M.C., Gómez-Ballesteros, M., Iglesias, J., Palomino, D., Roque, C., Ercilla, G. and Díaz-del-Río, V., 2015. Seamounts along the Iberian Continental Margins. Boletín Geológico y Minero, 126 (2-3): 483-514 ISSN: 0366-0176 Seamounts along the Iberian continental margins J.T. Vázquez(1), B. Alonso(2), M. C. Fernández-Puga(3), M. Gómez-Ballesteros(4), J. Iglesias(5), D. Palomino(1), C. Roque(6), G. Ercilla(2) and V. Díaz-del-Río(1) (1) Instituto Español de Oceanografía. Centro Oceanográfico de Málaga, Puerto Pesquero s/n, 29640, Fuengirola, Spain. [email protected]; [email protected]; [email protected] (2) Institut de Ciències del Mar, CSIC. Passeig Marítim de la Barceloneta, 37-49. 08003, Barcelona, Spain. [email protected]; [email protected] (3) Departamento de Ciencias de la Tierra, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Puerto Real, 11510, Puerto Real, Spain. [email protected] (4) Instituto Español de Oceanografía. Sede Central de Madrid, C/ Corazón de María 8, 28002, Madrid, Spain. [email protected] (5) IPROMA S.L., Camiño vello de Santiago n°24 - 36419, Sanguiñeda – Mos, Pontevedra, Spain. [email protected] (6) Instituto Português do Mar e da Atmosfera, 1749-077, Lisboa, Portugal. [email protected] ABSTRACT Seamounts are first-order morphological elements on continental margins and in oceanic domains, which have been extensively researched over recent decades in all branches of oceanography.
    [Show full text]