Maquetación 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natura 2000 Sites for Reefs and Submerged Sandbanks Volume II: Northeast Atlantic and North Sea
Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks Volume II: Northeast Atlantic and North Sea A report by WWF June 2001 Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks A report by WWF based on: "Habitats Directive Implementation in Europe Offshore SACs for reefs" by A. D. Rogers Southampton Oceanographic Centre, UK; and "Submerged Sandbanks in European Shelf Waters" by Veligrakis, A., Collins, M.B., Owrid, G. and A. Houghton Southampton Oceanographic Centre, UK; commissioned by WWF For information please contact: Dr. Sarah Jones WWF UK Panda House Weyside Park Godalming Surrey GU7 1XR United Kingdom Tel +441483 412522 Fax +441483 426409 Email: [email protected] Cover page photo: Trawling smashes cold water coral reefs P.Buhl-Mortensen, University of Bergen, Norway Prepared by Sabine Christiansen and Sarah Jones IMPLEMENTATION OF THE EU HD OFFSHORE REEFS AND SUBMERGED SANDBANKS NE ATLANTIC AND NORTH SEA TABLE OF CONTENTS TABLE OF CONTENTS ACKNOWLEDGEMENTS I LIST OF MAPS II LIST OF TABLES III 1 INTRODUCTION 1 2 REEFS IN THE NORTHEAST ATLANTIC AND THE NORTH SEA (A.D. ROGERS, SOC) 3 2.1 Data inventory 3 2.2 Example cases for the type of information provided (full list see Vol. IV ) 9 2.2.1 "Darwin Mounds" East (UK) 9 2.2.2 Galicia Bank (Spain) 13 2.2.3 Gorringe Ridge (Portugal) 17 2.2.4 La Chapelle Bank (France) 22 2.3 Bibliography reefs 24 2.4 Analysis of Offshore Reefs Inventory (WWF)(overview maps and tables) 31 2.4.1 North Sea 31 2.4.2 UK and Ireland 32 2.4.3 France and Spain 39 2.4.4 Portugal 41 2.4.5 Conclusions 43 3 SUBMERGED SANDBANKS IN EUROPEAN SHELF WATERS (A. -
Simulations of Strong Ground Motion in SW Iberia for the 1969 February 28 (Ms = 8.0) and the 1755 November 1 ( M ∼ 8.5) Earthq
September 12, 2007 9:54 GeophysicalJournalInternational gji3571 Geophys. J. Int. (2007) doi: 10.1111/j.1365-246X.2007.03571.x Simulations of strong ground motion in SW Iberia for the 1969 February 28 (M s = 8.0) and the 1755 November 1 (M ∼ 8.5) earthquakes – II. Strong ground motion simulations ,∗ , , , Rapha¨el Grandin,1 Jos´e Fernando Borges,1 2 Mourad Bezzeghoud,1 2 Bento Caldeira1 2 and Fernando Carrilho3 1Centro de Geof´ısica de Evora,´ Universidade de Evora,´ Evora,´ Portugal 2Departmento de F´ısica, Universidade de Evora,´ Evora,´ Portugal 3Instituto de Meteorologia, Lisbon, Portugal Accepted 2007 July 30. Received 2007 July 30; in original form 2006 November 24 SUMMARY This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 (M s = 8.0) and 1755 (M = 8.5–8.7) earthquakes. First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large (M s = 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. -
A Field Guide to Finding Fossils on Mars
Edinburgh Research Explorer A Field Guide to Finding Fossils on Mars Citation for published version: Mcmahon, S, Bosak, T, Grotzinger, JP, Milliken, RE, Summons, RE, Daye, M, Newman, SA, Fraeman, A, Williford, KH & Briggs, DEG 2018, 'A Field Guide to Finding Fossils on Mars', Journal of Geophysical Research: Planets. https://doi.org/10.1029/2017JE005478 Digital Object Identifier (DOI): 10.1029/2017JE005478 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Geophysical Research: Planets General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Journal of Geophysical Research: Planets REVIEW ARTICLE A Field Guide to Finding Fossils on Mars 10.1029/2017JE005478 S. McMahon1,2 , T. Bosak3, J. P. Grotzinger4, R. E. Milliken5 , R. E. Summons3 , M. Daye3, 3 6 6 1 Key Points: S. A. Newman , A. Fraeman , K. H. Williford -
A Census of Meddies Tracked by Floats
Progress in Oceanography 45 (2000) 209–250 A census of Meddies tracked by floats P.L. Richardson a,*, A.S. Bower a, W. Zenk b a Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA b Institut fu¨r Meereskunde, an der Universita¨t Kiel, Kiel, Germany Abstract Recent subsurface float measurements in 27 Mediterranean Water eddies (Meddies) in the Atlantic are grouped together to reveal new information about the pathways of these energetic eddies and how they are often modified and possibly destroyed by collisions with seamounts. Twenty Meddies were tracked in the Iberian Basin west of Portugal, seven in the Canary Basin. During February 1994 14 Meddies were simultaneously observed, 11 of them in the Iberian Basin. Most (69%) of the newly formed Meddies in the Iberian Basin translated southwestward into the vicinity of the Horseshoe Seamounts and probably collided with them. Some Meddies (31%) passed around the northern side of the seamounts and translated southw- estward at a typical velocity of 2.0 cm/s into the Canary Basin. Some Meddies observed there were estimated to be up to ෂ5 yr old. Four Meddies in the Canary Basin collided with the Great Meteor Seamounts and three Meddies were inferred to have been destroyed by the collision. Overall an estimated 90% of Meddies collided with major seamounts. The mean time from Meddy formation to a collision with a major seamount was estimated to be around 1.7 yr. Combined with the estimated Meddy formation rate of 17 Meddies/yr from previous work, this suggests that around 29 Meddies co-exist in the North Atlantic. -
Macaronesian Maritime Spatial Planning
Macaronesian Maritime Spatial Planning “ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS (EBSAS)” MarSP Deliverable: D.3.2. List of areas of ecological and biological significance (EBSAs) or Vulnerable Marine Ecosystems (VMEs) July 2019 Defining potential marine uses in Macaronesia, dealing with constraints WP name and conflicts while assuring the good marine environmental status Task 3.1. Filling knowledge gaps – Biophysical characteristics of the Task name selected area D.3.2. List of areas of ecological and biological significance or vulnerable Deliverable Name marine ecosystems Due Date of deliverable June 2019 Actual submission Date July 2019 Lopes I, Jorge V. 2019. Ecological or biologically significant marine areas (EBSAs). Deliverable - D.3.2., under the WP3 of MarSP: Macaronesian Citation Maritime Spatial Planning project (GA nº EASME/EMFF/2016/1.2.1.6/03SI2.763106). Document Information Document Name Ecological or biologically significant marine areas (EBSAs) Document ID D.3.2. Version 1.1 Version Date July 2019 Author(s) Isabel Lopes, Vitor Jorge Dissemination Level: Public History Version Date Modification Author(s) Isabel Lopes, Vitor 1.1. July 2019 Jorge Summary The MarSP project aims to develop concrete actions for the European Union Member States (Portugal and Spain) to build the necessary capacities and tools for the implementation of the EU Directive on MSP (Directive 2014/89/EU) in the Macaronesian region, including mechanisms for cross-border cooperation. This report delivers the information contributing to the development of Deliverable 3.2. “Technical”, developed under MarSP’s Work Package 3 “Defining potential marine uses in Macaronesia, dealing with constraints and conflicts while assuring the Good Marine Environmental Status”, namely Task 3.1 “Filling knowledge gaps - Biophysical characteristics of the selected area”. -
The Geology of European Coldwater Coral Carbonate Mounds the CARBONATE Project
ISSUE 30, APRIL 2010 AVAILABLE ON-LINE AT www.the-eggs.org The geology of European coldwater coral carbonate mounds the CARBONATE project Paper: ISSN 1027-6343 Online: ISSN 1607-7954 THE EGGS | ISSUE 30 | APRIL 2010 3 EGU News 4 News 11 Journal Watch 16 The geology of European coldwater coral carbonate mounds the CARBONATE project 23 Education 24 New books EDITORS Managing Editor: Kostas Kourtidis 28 Events Department of Environmental Engineering, School of Engineering Demokritus University of Thrace Vas. Sofias 12, GR-67100 Xanthi, Greece tel. +30-25410-79383, fax. +30-25410-79379 email: [email protected] 33 Job Positions Assistant Editor: Magdeline Pokar Bristol Glaciology Center, School of Geographical Sciences, University of Bristol University Road Bristol, BS8 1SS, United Kingdom tel. +44(0)117 928 8186, fax. +44(0)117 928 7878 email: [email protected] Hydrological Sciences: Guenther Bloeschl Institut fur Hydraulik, Gewasserkunde und Wasserwirtschaft Technische Universitat Wien Karlsplatz 13/223, A-1040 Wien, Austria tel. +43-1-58801-22315, fax. +43-1-58801-22399 email: [email protected] Biogeosciences: Jean-Pierre Gattuso Laboratoire d’Oceanographie de Villefranche, UMR 7093 CNRS- UPMC B. P. 28, F-06234 Villefranche-sur-mer Cedex France tel. +33-(0)493763859, fax. +33-(0)493763834 email: [email protected] Geodesy: Susanna Zerbini Department of Physics, Sector of Geophysics University of Bolo- gna, Viale Berti Pichat 8 40127 Bologna, Italy tel. +39-051-2095019, fax +39-051-2095058 e-mail: [email protected] Geodynamics: Bert L.A. Vermeersen Delft University of Technology DEOS - Fac. Aerospace Engineer- ing Astrodynamics and Satellite Systems Kluyverweg 1, NL-2629 HS Delft The Netherlands tel. -
The 1755 Lisbon Earthquake
Aquifer Sensitivity to Earthquakes: The 1755 Lisbon Earthquake Key Points: Andrés Sanz de Ojeda1 , Iván Alhama2, and Eugenio Sanz2 • The recession coefficient α can be used as a parameter to measure 1Departamento de Ingeniería Minera y Civil, Área de Ingeniería del Terreno, Escuela de Ingenieros de Caminos y Minas, sensitivity of aquifers to earthquakes 2 • The hydrogeological phenomena Universidad Politécnica de Cartagena, Cartagena, Spain, Departamento de Ingeniería y Morfología del Terreno, Escuela induced by the 1755 Lisbon Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain earthquake are described • The influence of the regional fractures, lithology, and recession The development of a theoretical analytical model leads us to consider the recession fi Abstract coef cients in these hydrogeological fi phenomena is analyzed coef cient as a useful hydrological parameter for studying the hydraulic impacts of an earthquake on spring flow in terms of the increase of persistent discharges and the overall alteration of springs. Both the inertia of the aquifer emptying and the increased pore pressure in the lower part of the aquifer caused by the earthquake contribute to maintaining the discharge of persistent springs. Abundant information on the hydrological phenomena induced or modified by the 1755 Lisbon earthquake (M ∈ [8,9]) and its relationship with present‐day knowledge of the geology and hydrogeology of Portugal and Spain, as Correspondence to: fl E. Sanz, well as Spanish spring statistics, have allowed us to identify the factors that most in uence the [email protected] hydraulic sensitivity of aquifers to that earthquake: regional faults, geological boundaries between large geological units, the granite lithology, and aquifers with high recession coefficients. -
Seismic Images and Magnetic Signature of the Late Jurassic to Early Cretaceous Africa–Eurasia Plate Boundary Off SW Iberia
Geophys. J. Int. (2004) 158, 554–568 doi: 10.1111/j.1365-246X.2004.02339.x Seismic images and magnetic signature of the Late Jurassic to Early Cretaceous Africa–Eurasia plate boundary off SW Iberia M. Rovere,1,2 C. R. Ranero,3 R. Sartori,† L. Torelli4 and N. Zitellini2 1Dipartimento di Scienze della Terra e Geologico-Ambientali, Universit`a di Bologna, Via Zamboni 67, 40120 Bologna, Italy. E-mail: [email protected] 2Istituto di Scienze MARine, Sezione di Geologia Marina, CNR, Via P.Gobetti 101, 40129 Bologna, Italy 3IFM-GEOMAR, Leibniz-Institute f¨ur Meereswissenschaften, Wischhofstrasse 1–3, D24148 Kiel, Germany 4Dipartimento di Scienze della Terra, Parco Area delle Scienze 157, Universit`a di Parma, Italy Accepted 2004 April 5. Received 2004 February 6; in original form 2002 November 22 SUMMARY Over the last two decades numerous studies have investigated the structure of the west Iberia continental margin, a non-volcanic margin characterized by a broad continent–ocean transition (COT). However, the nature and structure of the crust of the segment of the margin off SW Iberia is still poorly understood, because of sparse geophysical and geological data coverage. Here we present a 275-km-long multichannel seismic reflection (MCS) profile, line AR01, acquired in E–W direction across the Horseshoe Abyssal Plain, to partially fill the gap of information along the SW Iberia margin. Line AR01 runs across the inferred plate boundary between the Iberian and the African plates during the opening of the Central Atlantic ocean. The boundary separates crust formed during or soon after continental rifting of the SW Iberian margin from normal seafloor spreading oceanic crust of the Central Atlantic ocean. -
Earth and Planetary Science Letters Destructive Episodes And
Earth and Planetary Science Letters 559 (2021) 116772 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Destructive episodes and morphological rejuvenation during the lifecycles of tectonically active seamounts: Insights from the Gorringe Bank in the NE Atlantic ∗ Davide Gamboa a, , Rachid Omira a,b, Aldina Piedade a, Pedro Terrinha a,b, Cristina Roque b,c, Nevio Zitellini d a Instituto Português do Mar e de Atmosfera – IPMA, I.P.; Rua C do Aeroporto, 1749-077 Lisbon, Portugal b Instituto D. Luiz – IDL; Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisbon, Portugal c Estrutura de Missão de Extensão da Plataforma Continental – EMEPC; Rua Costa Pinto, n. 165, 2770-047 Paço de Arcos, Portugal d Istituto di Scienze Marine (ISMAR), Via Gobetti 101, 40129, Bologna, Italy a r t i c l e i n f o a b s t r a c t Article history: Seamounts are spectacular bathymetric features common within volcanic and tectonically active Received 25 July 2020 continental margins. During their lifecycles, they evolve through stages of construction and destruction. Received in revised form 2 December 2020 The latter are marked by variable magnitude flank collapses that often interrupt the evolution of Accepted 19 January 2021 seamounts and constitute a major source of hazard. The Southwest Iberian Margin is a tectonically Available online xxxx complex region with moderate to high seismicity where numerous seamounts occur. On such a setting, Editor: J.P. Avouac earthquake-triggered collapses on seamount flanks are common, leading to the deposition of Mass- Keywords: Transport Deposits (MTDs) on the surrounding abyssal plains. -
Phd in Marine Sciences
Title/Name of the area: Madeira – Tore Presented by Maria Ana Dionísio (PhD in marine sciences), with a grant funded by Instituto da Conservação da Natureza e das Florestas and ISPA - Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, [email protected] Pedro Ivo Arriegas, Instituto da Conservação da Natureza e das Florestas, [email protected] Abstract (in less than 150 words) Madeira-Tore EBSA includes a total of 17 seamounts. Seamounts are hotspots of marine life and in general they represent areas of an enhanced productivity, especially when compared with nearby abyssal areas. This EBSA has a total area of 197431 km2 with depths ranging from 25m (top of Gettysburg seamount) to 4930m (bottom of Tore seamount). The area includes a proposed Site of Community Importance - Gorringe Bank and an OSPAR High Seas Marine Protected Area – Josephine seamount. All structures included in the Madeira-Tore EBSA fulfill four or more out of the seven EBSA scientific criteria. A total of 965 species are present in this EBSA of which 7% are protected under international or regional law. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) The Madeira-Tore EBSA includes a total of 17 seamounts (Ampere, Ashton, Coral Patch (northern part of), Dragon, Erik, Gago Coutinho, Godzilla, Gorringe Bank (Ormond and Gettysburg seamounts), Hirondelle II, Josephine, Lion, Pico Pia, Tore, Seine, Sponge Bob, and Unicorn). These seamounts present particular features which make this area eligible as an EBSA when assessed against the EBSA scientific criteria. Benthic biological communities on seamounts are highly vulnerable to human activities. -
Potential Fossil Endoliths in Vesicular Pillow Basalt, Coral Patch Seamount, Eastern North Atlantic Ocean
Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 1-1-2011 Potential Fossil Endoliths in Vesicular Pillow Basalt, Coral Patch Seamount, Eastern North Atlantic Ocean Barbara Cavalazzi University of Johannesburg Frances Westall Centre de biophysique moléculaire Sherry L. Cady Portland State University Roberto Barbieri Università di Bologna Frédéric Foucher Centre de biophysique moléculaire Let us know how access to this document benefits ouy . Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Environmental Microbiology and Microbial Ecology Commons, and the Geology Commons Citation Details Cavalazzi, B., Westall, F., Cady, S. L., Barbieri, R., & Foucher, F. (2011). Potential Fossil Endoliths in Vesicular Pillow Basalt, Coral Patch Seamount, Eastern North Atlantic Ocean. [Article]. Astrobiology, 11(7), 619-632. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact [email protected]. ASTROBIOLOGY Volume 11, Number 7, 2011 © Mary Ann Liebert, Inc. DOl: 1O.1089/ast.2011.0657 Potential Fossil Endoliths in Vesicular Pillow Basalt, Coral Patch Seamount, Eastern North Atlantic Ocean Barbara Cavalazze· 2 Frances Westall ? Sherry L. Cady? Roberto Barbieri,4 and Frederic Foucher 2 Abstract The chilled rinds of pillow basalt from the Ampere-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include fila mentous and spherical microfossil-like structures, were detected in K-phillipsi te-filled amygdules within the chilled rinds. -
The Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank the Seamounts of the Gorringe Bank
THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK THE SEAMOUNTS OF THE GORRINGE BANK Introduction 4 •Oceana expedition and studies 6 •Geographical location 7 1 Geology 8 •Geomorphology, topography and petrology 8 •Seismic activity and tsunamis 12 2 Oceanography 17 •Currents and seamounts 17 •The Mediterranean influence 20 oMeddies 21 •The Atlantic influence 22 •Oxygen levels 23 3 Biology 24 •Endemisms and Biodiversity 27 •List of species 31 •Peculiarities of some of the species on the Gorringe Bank 35 oDescription of the ecosystem observed 36 4 Threats to the biodiversity of Gorringe: fishing 41 5 Conclusions and proposals 46 GLOSSARY 50 BIBLIOGRAPHY 58 3 LAS MONTAÑAS SUBMARINAS DE GORRINGE Introduction A seamount is regarded as a geological elevation that reaches a minimum of 1,000 metres in height and can consist of very different physical, geological and chemical pro- perties. Therefore, seamounts can only exist where there are sea beds more than one kilo- metre deep, or, which is one and the same thing, over 60%–62% of the land surface1. There are also thousands of smaller elevations that tend to be known as abyssal hills (when they are less than 500 metres) or mounds (between 500 and 1,000 metres). Whether in isolation or as part of extensive ranges, there are possibly more than 100,000 sea- mounts around the world2. At present, close to 30,000 of them have been identified, of which around 1,000 can be found in the Atlantic Ocean3, where in addition the largest range in the world can be found; the Mid–Atlantic Ridge, which stretches from Iceland to the Antarctic.