Template 4 – North of the Azores Area

Total Page:16

File Type:pdf, Size:1020Kb

Template 4 – North of the Azores Area Title/Name of the area: NAA Presented by Maria Ana Dionísio (PhD in marine sciences), with a grant funded by Instituto da Conservação da Natureza e das Florestas and ISPA - Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, [email protected] Pedro Ivo Arriegas, Instituto da Conservação da Natureza e das Florestas, [email protected] Abstract NAA (North of the Azores Area) EBSA is compounded by a total of 7 seamounts and one hydrothermal vent, this area includes one OSPAR high-seas Marine Protected Area - Mid Atlantic Ridge North of Azores (MARNA). The structures described and included are hotspots of marine life and in general they represent areas of an enhanced productivity, especially when compared with nearby abyssal areas. The Moytirra is the first known deep-sea hydrothermal vent field on the slow- spreading Mid-Atlantic Ridge North of the Azores, giving a high level of uniqueness to the NAA. This EBSA has a total area of 634515 km2 with identified structures depths ranging from 660m (top of Sedlo seamount) to 3200m (bottom of Lukin-Lebedev seamount). The area presents particular features which make this area eligible as an EBSA when assessed against the EBSA scientific criteria. All structures included in the NAA EBSA fulfill four or more out of the seven EBSA scientific criteria. The Sedlo bank is recently and extensively studied. A total of 536 species are present in this EBSA of which 6% are protected under international or regional law. The EBSA area is totally located under Portuguese national jurisdiction, with 7 of the 8 structures located on the extended continental shelf (seabed) and 1 (Sedlo) on the Portuguese EEZ close to Azores. Introduction The NAA EBSA includes a total of 7 seamounts (Altair, Antialtair, Chaucer, Cherkis, Crumb, Lukin- Lebedev and Sedlo), 1 hydrothermal vent (Moytirra) and the OSPAR high-seas Marine Protected Area (MARNA). These structures present particular features which make this area eligible as an EBSA when assessed against the EBSA scientific criteria. The majority of the EBSA structures (7) are classified as a seamount structure. The seamounts are defined as isolated topographic features of the seabed that have a limited lateral extent and rise more than 1000 m from abyssal depths (Menard, 1964). Large seamounts are usually originate as volcanoes and primarily associated with the intraplate hotspots and mid-ocean ridges (Staudigel et al., 2010). Generally, seamounts topography may act as an element which turns the structures into high complexity sites. Due to their more or less isolated location, these structures can be an obstacle to the free circulation of the oceans. This gives rise to different kinds of phenomena and disturbances, including an increase in the speed of sea currents, upwellings, turbulence, Taylor cones, eddies, and NAA 1 even jets in the zones where the seamounts interact with ocean currents (Richardson et al., 2000; Kunze & Smith, 2004; White et al., 2007; Pakhorukov, 2008). Seamounts are hotspots of marine life (e.g. Rogers, 1994; Gubbay, 2003; Morato & Pauly, 2004; Pitcher et al., 2007, 2010; Mendonça et al., 2012), and in general represent areas of enhanced productivity in comparison with nearby abyssal areas. In most cases, around the seamounts there is an extensive anticyclonic eddy associated with the lifting of nutrients from the rich deep water, giving rise to high concentrations of nitrates and chlorophyll in shallow waters (Coelho & Santos, 2003), which encourages the development of a wealth of flora and fauna on the structures, leading to exposed hard substrates and improved food conditions for epibenthic suspension feeders (e.g. Cartes et al., 2007 a), b); Genin & Dower, 2007) such as cold water corals or deep water sponges (e.g. Samadi et al., 2007; Sánchez et al., 2008), tunas (e.g. Yasui, 1986; Morato et al., 2010, Ressurreição & Giacomello, 2013), marine mammals (e.g. Cañadas et al., 2002; Correia et al., 2015), and other organisms which apparently feed on prey aggregations (e.g. Boehler & Sasaki, 1988; Porteiro & Sutton, 2007; Tabachnick & Menchenina, 2007). Seamounts are biologically distinctive habitats of the open ocean exhibiting a number of unique features (Rogers, 1994; Probert, 1999; Morato & Clark, 2007). These structures can host very distinctive biological communities that are different to the communities on nearby soft sediment dominated abyssal plain, and these particular places may attract pelagic fish including larger, commercially valuable vertebrate species (Beryx splendens) and Invertebrate (Charonia lampas) and other marine species like a top predators such as the shark (Prionace glauca), and reptile species as a loggerhead sea turtles (Caretta caretta) and protected marine mammals (Balaenoptera borealis) (see e.g. Holland & Grubbs, 2007, Kaschner, 2007, Santos et al., 2007). Benthic biological communities on seamounts are highly vulnerable to human activities. Many benthic species are long-lived and slow-growing, and not resilient to human impacts (Convention on Biological Diversity, 2008). Seamounts are locations for a broad range of current-topography interactions and biophysical coupling, with implications for both phyto and zooplankton. Seamounts appear to support relatively large planktonic and higher consumer biomass when compared to surrounding ocean waters, particularly in oligotrophic oceans. It has been a widely held view that in situ enhancement of primary production fuels this phenomenon, but this has recently been challenged (Genin & Dower, 2007). Productivity in oceanic settings depends on light and nutrient availability, while overall production is the result of productivity and accumulation of the phytoplankton. At a seamount, either a seamount- generated, vertical nutrient flux has to be shallow enough to reach the euphotic zone and the ensuing productivity retained over the seamount long enough to allow transfer to higher trophic levels, or the seamount must rely on allochthonous inputs of organic material to provide a trophic subsidy to resident populations (Clark et al., 2010). NAA 2 The EBSA area shelters the only hydrothermal vent known to date in the North of the Azores. Since a great part of the seamounts and other structures in these EBSA remains unexplored, the presence of more vent communities and more seamounts cannot be excluded with full confidence. Hydrothermal vent fields are a peculiar structure site where high temperature, mineral-rich fluids discharge from the seafloor following the circulation, heating, and geochemical reactions of seawater in oceanic crust (Corliss et al., 1979). Hydrothermal vents occur along spreading ridges (such as the mid-Atlantic ridge), fracture zones and back-arc basins (Gage & Tyler, 1991). They are produced by the intrusion of seawater in the upper levels of the crust through channels formed in cooling lava flows, reacting chemically with hot basalt inside the crust generating a reflux with then rising back to the sea-bed to vent as superheated water enriched with compounds such as sulphides, metals, CO2 and methane (Gubbay, 2002). These are particular locations where high temperature, mineral-rich fluids discharge from the seafloor following the circulation, heating, and geochemical reactions of seawater in oceanic crust (Corliss et al., 1979). Generally, hydrothermal vent fields cover small areas of the seabed. The vents can have a wide spectrum of distribution, ranging from the deeper Beebe Hydrothermal Vent Field, laying in the Cayman Trough, a deep section of the Caribbean south of Cuba at ~5000 meters (Tarasov et al., 2005; Connelly et al., 2012) to the shallower in the D. João de Castro Bank near to Azores at 20m depth (Cardigos et al., 2005; Tarasov et al., 2005). The hydrothermal vent fields play a primordial role sustaining abundant populations of faunal species in the deep sea by the autochthonous primary production of high chemosynthetic primary production (e.g. Lutz & Kennish, 1993). The process use the reduced compounds (typically hydrogen sulfide, methane, or hydrogen) in vent fluids to fix inorganic carbon (Karl et al., 1980) that can be oxidized by microbes to release energy for the formation of organic carbon from carbon dioxide, carbon monoxide, or methane (Van Dover et al., 2002). The chemosynthetic organisms may be present in the water column, at the seafloor as microbial mats, within sediments, fractures of crustal rocks or the sub- seabed, or/and in symbioses with larger multi-cellular organisms (Dubilier et al., 2008). This microbiota mediate the transformation of chemical energy, thereby facilitating the development and maintenance of densely populated ecosystems in which both biomass and faunal abundances are very much greater than is typical at the deep seafloor (e.g. Lutz & Kennish, 1993; Smith et al., 2008). The hydrothermal community sustains abundant populations in the deep sea by the autochthonous primary production of chemosynthetic microbes (Grassle, 1985). More than 400 new faunal species have been described from deep-sea hydrothermal vents (Desbruyeres et al., 2006), enhancing our knowledge of marine biodiversity (Van Dover et al., 2002). The NAA EBSA area (Figure 1) includes 8 different structures that fulfill at least four EBSA Criteria. There are differences in the information available for each structure included in the EBSA area (Table 1). The Sedlo seamount is one of the “most” explored in the EBSA area. The seamount started to be studied in 2002, and from these data until 2005, Sedlo was
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Age Progressive Volcanism in the New England Seamounts and the Opening of the Central Atlantic Ocean
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B12, PAGES 9980-9990, NOVEMBER 10, 1984 AGEPROGRESSIVE VOLCANISM IN THENEW ENGLAND SEAMOUNTS AND THE OPENING OF THE CENTRAL ATLANTIC OCEAN R. A. Duncan College of Oceanography, Oregon State University, Corvallis Abstract. Radiometric ages (K-Ar and •øAr- transient featur e•s that allow calculations of 39Ar methods) have been determined on dredged relative motions only. volcanic rocks from seven of the New England The possibility that plate motions may be Seamounts, a prominent northwest-southeast trend- recorded by lines of islands and seamounts in the ing volcanic lineament in the northwestern ocean basins is attractive in this regard. If, Atlantic Ocean. The •øAr-39Ar total fusion and as the Carey-Wilson-Morgan model [Carey, 1958; incren•ental heating ages show an increase in Wilson, 1963; Morgan, 19•1] proposes, sublitho- seamount construction age from southeast to spheric, thermal anomalies called hot spots are northwest that is consistent with northwestward active and fixed with respect to one another in motion of the North American plate over a New the earth's upper mantle, they would then consti- England hot spot between 103 and 82 Ma. A linear tute a reference frame for directly and precisely volcano migration rate of 4.7 cm/yr fits the measuring plate motions. Ancient longitudes as seamount age distribution. These ages fall well as latitudes would be determined from vol- Within a longer age progression from the Corner cano construction ages along the tracks left by Seamounts (70 to 75 Ma), at the eastern end of hot spots and, providing relative plate motions the New England Seamounts, to the youngest phase are also known, quantitative estimates of conver- of volcanism in the White Mountain Igneous gent plate motions can be calculated [Engebretson Province, New England (100 to 124 Ma).
    [Show full text]
  • Satellite Oceanography for Ocean Forecasting
    1 SATELLITE OCEANOGRAP HY FOR OCEAN FORECASTING P.Y. Le Traon CLS Space Oceanography Division Ocean Forecasting Oristano Summer School July 1997 Revised July 2000 - PAGE 1 - 1. OUTLINE This lecture aims at providing a general introduction to satellite oceanography in the context of ocean forecasting. Satellite oceanography is an essential component in the development of operational oceanography. Major advances in sensor development and scientific analysis have been achieved in the last 20 years. As a result, several techniques are now mature (e.g. altimetry, infra-red imagery) and provide quantitative and unique measurements of the ocean system. We begin with a general overview of space oceanography, summarizing why it is so useful for ocean forecasting and briefly describing satellite oceanography techniques, before looking at the status of present and future missions. We will then turn to satellite altimetry, probably the most important and mature technique currently in use for ocean forecasting. We will also detail measurement principles and content, explain the basic data processing, including the methodology for merging data sets, and provide an overview of results recently obtained with TOPEX/POSEIDON and ERS-1/2 altimeter data. Lastly, we will focus on real-time aspects crucial for ocean forecasting. Perspectives will be given in the conclusion. 2. OVERVIEW OF SPACE OCEANOGRAPHY 2.1 WHY DO WE NEED SATELLITES FOR OCEAN FORECASTING? An ocean hindcasting/forecasting system must be based on the assimilation of observation data into a numerical model. It also must have precise forcing data. The ocean is, indeed, a turbulent system. ―Realistic‖ models of the ocean are impossible to construct owing both to uncertainty of the governing physics and of an initial state (not to mention predictability issues).
    [Show full text]
  • Feeding Ecology of Demersal Elasmobranchs from the Shelf and Slope Off the Balearic Sea (Western Mediterranean)
    Scientia Marina 75(4) December 2011, 633-639, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2011.75n4633 Feeding ecology of demersal elasmobranchs from the shelf and slope off the Balearic Sea (western Mediterranean) MARIA VALLS, ANTONI QUETGLAS, FRANCESC ORDINES and JOAN MORANTA Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma, Spain. E-mail: [email protected] SUMMARY: The feeding ecology of eight demersal elasmobranchs, three sharks (Etmopterus spinax, Scyliorhinus canicula and Galeus melastomus) and five batoids (Myliobatis aquila, Leucoraja naevus, Raja polystigma, R. miraletus and R. clavata), from the Balearic Sea (western Mediterranean) was analyzed. For each species, the diet and feeding habits were characterized by depth strata using quantitative indices such as diet overlap, diet breadth and prey diversity. Diet variation with size and depth were also tested for the most abundant species. For shelf-living species, natantian and reptantian crustaceans together with teleosts were the most important preys. On slope bottoms, euphausiids were the preferential prey for S. canicula and G. melastomus, while E. spinax fed mainly on cephalopods. The most specialist and generalist diet corresponded to G. melastomus living on the upper slope and S. canicula from the continental shelf, respectively. High overlap was found between all the skates on the continental shelf and the sympatric sharks S. canicula and G. melastomus on the slope. Significant overlap was also found between S. canicula and R. clavata on the continental shelf. Size was found to significantly affect the diet of S. canicula, G. melastomus and R.
    [Show full text]
  • A Short Note on the Cephalopods Sampled in the Angola Basin During the DIVA-1 Expedition Uwe Piatkowskiã, Rabea Diekmann
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 227–230 www.elsevier.de/ode RESULTS OF THE DIVA-1 EXPEDITION OF RV ‘‘METEOR’’ (CRUISE M48/1) A short note on the cephalopods sampled in the Angola Basin during the DIVA-1 expedition Uwe PiatkowskiÃ, Rabea Diekmann IFM-GEOMAR, Leibniz-Institut fu¨r Meereswissenschaften an der Universita¨t Kiel, Du¨sternbrooker Weg 20, D-24105 Kiel, Germany Abstract Five cephalopods, all belonging to different species, were identified from deep-sea trawl samples conducted during the DIVA 1-expedition of RV ‘‘Meteor’’ in the Angola Basin in July 2000. These were the teuthoid squids Bathyteuthis abyssicola, Brachioteuthis riisei, Mastigoteuthis atlantica, Galiteuthis armata, and the finned deep-sea octopus Grimpoteuthis wuelkeri. The present study contributes information on size, morphometry, biology and distribution of the species form this unique cephalopod collection. r 2004 Elsevier GmbH. All rights reserved. Keywords: Cephalopoda; Deep-sea; Angola Basin; Cirrate octopods Introduction captured. These circumstances demonstrate the great scientific value of any cephalopod sampled from deep- Cephalopods in the bathyal and abyssal ecosystems sea habitats. The abyssal plains still belong to the most have been the subject of only a limited number of studies unknown regions in the oceans. One of these plains, the due to the obvious difficulties involved in collecting Angola Basin was sampled during the RV ‘‘Meteor’’ them adequately at such great depths (Voss 1967; expedition in 2000. In the present study, we provide Villanueva 1992). A further drawback relates to their information on a small collection of cephalopods which delicate bodies, which are frequently damaged almost have been caught during the expedition and which beyond recognition in trawl samples.
    [Show full text]
  • Synthesis of Information on Some Demersal Crustaceans Relevant for Fisheries in the South Central Mediterranean Sea
    3232 MEDSUDMED - TECHNICAL DOCUMENTS Synthesis of information on some demersal Crustaceans relevant for fisheries in the South central Mediterranean Sea SYNTHESIS OF INFORMATION ON SOME DEMERSAL CRUSTACEANS RELEVANT FOR FISHERIES IN THE SOUTH-CENTRAL MEDITERRANEAN SEA FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome 2013 The conclusions and recommendations given in this and in other documents in the Assessment and Monitoring of the Fishery Resources and the Ecosystems in the Straits of Sicily Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • An Illustrated Key to the Families of the Order
    CLYDE F. E. ROP An Illustrated RICHARD E. YOl and GILBERT L. VC Key to the Families of the Order Teuthoidea Cephalopoda) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 13 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 13 Clyde F. E. Roper, An Illustrated Key 5K?Z" to the Families of the Order Teuthoidea (Cephalopoda) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Mastigotragus, a New Generic Name for Mastigoteuthis Pyrodes Young, 1972 (Cephalopoda: Mastigoteuthidae)
    European Journal of Taxonomy 105: 1–6 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.105 www.europeanjournaloftaxonomy.eu 2014 · Young R.E., Vecchione M. & Braid H.E. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:FCD51F6F-A5D6-4466-ADB6-0ADC9F560F66 Mastigotragus, a new generic name for Mastigoteuthis pyrodes Young, 1972 (Cephalopoda: Mastigoteuthidae) Richard E. YOUNG,1 Michael VECCHIONE 2 & Heather E. BRAID 3 1 University of Hawaii, Honolulu, Hawaii, USA. Email: [email protected] 2 NMFS National Systematics Laboratory, Smithsonian Institution, Washington, DC, USA. Email: [email protected] 3 Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand. Email: [email protected] 1 urn:lsid:zoobank.org:author:C5177553-E350-4C6A-9D2E-70581F2ED152 2 urn:lsid:zoobank.org:author:E79EA1DA-A7B4-482D-A5E3-AB81E74E4743 3 urn:lsid:zoobank.org:author:A28B5D88-B00C-46A1-9F48-367918CAF2F2 Abstract. A recent paper on the phylogenetic relationships of species within the cephalopod family Mastigoteuthidae meant great progress in stabilizing the classifi cation of the family. The authors, however, left the generic placement of Mastigoteuthis pyrodes unresolved. This problem is corrected here by placing this species in a new monotypic genus, Mastigotragus, based on unique structures of the photophores and the funnel/mantle locking apparatus. Keywords. Mastigoteuthidae, morphology, nomenclature, Mastigotragus gen. nov., deep-sea squid Young R.E., Vecchione M. & Braid H.E. 2014. Mastigotragus, a new generic name for Mastigoteuthis pyrodes Young, 1972 (Cephalopoda: Mastigoteuthidae). European Journal of Taxonomy 105: 1–6. http://dx.doi.
    [Show full text]
  • Rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL
    INTERNAL DOCUMENT rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL [This document should not be cited in a published bibliography, and is supplied for the use of the recipient only]. a - INSTITUTE OF \ z OCEAN OGRAPHIC SCIENCES %V. '"oos INSTITUTE OF OCEANOGRAPHIC SCIENCES Worm ley, Godalming, Surrey, GU8 BUB. (042-879-4141) (Director: Dr. A. S. Laughton) Bidston Observatory, Crossway, Birkenhead, Taunton, Merseyside, L43 7RA. Somerset, TA1 2DW. (051 652-2396) (0823-86211) (Assistant Director: Dr. D. E. Cartwright) (Assistant Director: M.J. Tucker) OCEANOGRAPHY rslatsd to DEBP SEA. WASTE DISPOSAL A Survev commissioned bv the Department of the Environment In^tltnt^ or Oceanogr^phie Sciences, Woruloy, ^onalming, Surrey GDW September 1978 •r; Wn fr^'W'w , -ig^at igGr^SSjes*'': 'i'-.r '&#0 4 i®i": iSSfflSj*-; ,*h :gSm '# .f f. .-< ' ^ ' \" . ' .- : - '-' '"i" "'"Tn'fWr^ ^ "rf'iVf. i.^t. %& g,*;gh^ h#wk^, . '::Y '"?' "%v t /:;,f »"-^iY: ^jw&j ,<1.^....-L. ,. t '.4..^,.,.. r X e^^TDy; . '.*,,.:'*,;wVk..^... , .. WIS3 li A) pi if r 31*: 'AM jngraa $#* ;- :Y^-; •••••: if'**J KAW W!&#' %wt;pfy W,.x u t wk%Wg%#&0 '•'£i'5dteii>irt PAWR t .* jpM»rtte»ai«l'*<M»r» •"i £i 'li-,'".!,,• -•t'iA^r., - !MfcSs-d»e. * CONTENTS Page i-% INTRODUCTION 1.1 CHAPTER 1 GEOLOGY AND GEOPHYSICS 2.1 CHAPTER 2 GEOCHEMISTRY 3.1 CHAPTER 3 PHYSICAL OCEANOGRAPHY 4.1 CHAPTER 4 MARINE BIOLOGY INTROnUCTZON The Sixth Report of the Royal CommisaioA on Environmental Pollution (Cmnd 66l8) recommended that a programme of research is needed to ensure that safe containment for an indefinite period of lon^-lived, highly radioactive wastes is feasible before a commitment is made to a large scale nuclear programme, In response to the Commission^ recommendations the Government decided to keep open and study further two options for the disposal of waste in the ocean (Cmnd 6820).
    [Show full text]