Seamount Physiography and Biology in the North-East Atlantic and Open Access Open Access Mediterranean Sea Earth System Earth System Dynamics 1 1 1 1 2 Dynamics3 1 T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inferences on Potential Seamount Locations from Mid-Resolution
T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, Page 7 INFERENCES ON POTENTIAL SEAMOUNT LOCATIONS FROM MID- RESOLUTION BATHYMETRIC DATA Adrian Kitchingman and Sherman Lai Fisheries Centre, The University of British Columbia. 2259 Lower Mall, Vancouver, B.C., V6T 1Z4, Canada [email protected]; [email protected] ABSTRACT Seamounts are underwater volcanoes that did not grow tall enough to break to the sea surface and turn into islands. Once formed, seamounts tend to gradually sink under their own weight and the subsidence of the lithosphere. The ocean floor is littered with these former seamounts, here called ‘seamounds’. Seamounts occur throughout the world's oceans, but their number (which may surpass 50,000) is difficult to estimate, even roughly, because it depends on the resolution of the bathymetric map used and the specific definition of a seamount used, i.e., the limits used to distinguish between seamounts and seamounds. Here, the locations of a subset of the seamounts of the world were identified using two algorithms relying on the depth differences between adjacent cells of a digital global elevation map distributed by the U.S. National Oceanographic and Atmospheric Agency (NOAA). The overlap of both algorithms resulted in a set of about 14,000 seamounts, but a different number would have been found had we used different thresholds. Known seamount locations supplied by NOAA and SeamountsOnline (http://seamounts.sdsc.edu) were compared against the corresponding seamounts located by the study, which led to some degree of ground-truthing. The coordinates of the seamounts identified in this study are available on the CD-ROM attached to this report, and on http://www.seaaroundus.org. -
Executive Summary of the Partial Submission
Partial Submission of the Government of the Kingdom of Denmark together with the Government of Greenland to the Commission on the Limits of the Continental Shelf The North-Eastern Continental Shelf of Greenland 30°W 20°W 10°W 0° 10°E 20°E F r a m S 30°W S t v r a a i l t b a a e S 80°N GR No r d s r t t H K n h -E as ov e E ga n r a rd Ridge a i B ENLAND t G p 20°E Boreas Basin o ree v i nla c 75°N h n E d a s R S t hel G i r d e f e g n e l a n d R i n i d s g a e B d n l a n e e 75°N r G e g d R i Vesteris Seamount 10°E s n h o M 70°N Jan Mayen 20°W 70°N 10°W 0° Executive Summary N The North-Eastern Continental Shelf of Greenland Publisher: Geological Survey of Denmark and Greenland (GEUS) Royal Danish Ministry of Climate, Energy and Building Øster Voldgade 10, DK-1350 Copenhagen K, Denmark Printers: Rosendahl/Schultz Grafisk, Albertslund, Denmark Printed: October 2013 ISBN: 978-87-7871-368-1 2 Ella Ø with the wintering station for the Lauge Koch expeditions , Central East Greenland Photo: Jakob Lautrup N The North-Eastern Continental Shelf of Greenland Contents 1. Introduction ............................................................................................................................................................................ 5 2. Maps and Coordinates ...................................................................................................................................................... -
Importance of Seamount-Like Features for Conserving Mediterranean Marine Habitats and Threatened Species
Nº. 1105 IMPORTANCE OF SEAMOUNT-LIKE FEATURES FOR CONSERVING MEDITERRANEAN MARINE HABITATS AND THREATENED SPECIES Ricardo Aguilar, Xavier Pastor, Silvia García & Pilar Marín Oceana. Leganitos, 47 - 28013 Madrid. Spain - *[email protected] INTRODUCTION HABITAT LOCATION MAIN SPECIES 16 of the more than 200 seamount‑like peaks in the Mediterranean1 have been observed using ROV. Coral reefs 4, 5, 6, 7 Lophelia pertusa, Madrepora oculata Desmophyllum dianthus, Stenocyathus vermiformis, The findings, which include carnivorous sponges, elasmobranches, coral gardens, sponge aggregations, Cold water corals All sites Caryophyllia spp. Pourtalosmilia anthophyllites, Javania caileti, coralligenous beds, as well as species new to science like the giant foraminifera Spiculosiphon oceana, Anomocora fecunda, Dendrophyllia spp. Paramuricea spp., Eunicella spp., Viminella flagellum, or new to the Mediterranean, like the scleractinian Anomocora fecunda, underscore the importance of 1, 2, 3, 4, 5, Callogorgia verticillata, Acanthogorgia spp., Placogorgia these geological features as hotspots and shelters/refuges species and habitats that are threatened, in Gorgonian/coral gardens: 6, 7, 8, 9, 11, coronata, Swiftia pallida, Muriceides lepida, Villogorgia regression, or rare in other Mediterranean areas. 12, 13, 14 bebrycoides, Bebryce mollis, Nicella granifera 1, 4, 5, 6, 7, Leiopathes glaberrima, Antipathes dichotoma, Antipathella METHODOLOGY Black corals Since 2006, Oceana has carried out six expeditions in the Mediterranean performing 129 ROV’s dives 9, 11, 15, 16 subpinnata, Parantipathes larix Isidella elongata, Pennatula spp., Pteroeides griseum, 2, 3, 4, 7, 8, over 16 seamounts, between ‑37 and ‑638 meters deep. Soft bottoms’ octocorals Virgularia mirabilis, Veretillun cynomorium, Kophobelemnon 9, 11, 14, 16 RESULTS stelliferum, Funiculina quadrangularis 2 3, 4, 5, 6, 7, Asconema setubalense, Phakellia spp., Axinella spp. -
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance Contributors: J. Anthony Koslow, Peter Auster, Odd Aksel Bergstad, J. Murray Roberts, Alex Rogers, Michael Vecchione, Peter Harris, Jake Rice, Patricio Bernal (Co-Lead members) 1. Physical, chemical, and ecological characteristics 1.1 Seamounts Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m. Only 6.5 per cent of the deep seafloor has been mapped, so the global number of seamounts must be estimated, usually from a combination of satellite altimetry and multibeam data as well as extrapolation based on size-frequency relationships of seamounts for smaller features. Estimates have varied widely as a result of differences in methodologies as well as changes in the resolution of data. Yesson et al. (2011) identified 33,452 seamount and guyot features > 1000 m in height and 138,412 knolls (100 – 1000 m), whereas Harris et al. (2014) identified 10,234 seamount and guyot features, based on a stricter definition that restricted seamounts to conical forms. Estimates of total abundance range to >100,000 seamounts and to 25 million for features > 100 m in height (Smith 1991; Wessel et al., 2010). -
Microbiology of Seamounts Is Still in Its Infancy
or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in MOUNTAINS IN THE SEA Oceanography MICROBIOLOGY journal of The 23, Number 1, a quarterly , Volume OF SEAMOUNTS Common Patterns Observed in Community Structure O ceanography ceanography S BY DAVID EmERSON AND CRAIG L. MOYER ociety. © 2010 by The 2010 by O ceanography ceanography O ceanography ceanography ABSTRACT. Much interest has been generated by the discoveries of biodiversity InTRODUCTION S ociety. ociety. associated with seamounts. The volcanically active portion of these undersea Microbial life is remarkable for its resil- A mountains hosts a remarkably diverse range of unusual microbial habitats, from ience to extremes of temperature, pH, article for use and research. this copy in teaching to granted ll rights reserved. is Permission S ociety. ociety. black smokers rich in sulfur to cooler, diffuse, iron-rich hydrothermal vents. As and pressure, as well its ability to persist S such, seamounts potentially represent hotspots of microbial diversity, yet our and thrive using an amazing number or Th e [email protected] to: correspondence all end understanding of the microbiology of seamounts is still in its infancy. Here, we of organic or inorganic food sources. discuss recent work on the detection of seamount microbial communities and the Nowhere are these traits more evident observation that specific community groups may be indicative of specific geochemical than in the deep ocean. -
The Climate-Sensitive Vesterisbanken Area (Central Greenland Sea): Depositional Environment and Paleoceanography During the Past 250,000 Years
The climate-sensitive Vesterisbanken area (central Greenland Sea): Depositional environment and paleoceanography during the past 250,000 years MARTIN ANTONOW1, PETER MARTIN GOLDSCHMIDT2j3and HELMUT ERLENKEUSER2 1. Freiberg University of Mining and Technology, Institute of Geology, Bernhard-von-Cotta-Str. 2, D-09596 Freiberg, Germany 2. SFB 313, University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany 3. present address: PCD, Eckernforder Str. 259, D-24119 Kiel, Germany ABSTRACT Sedimentological, micropaleontological and geochemical studies of sediment cores from the Vesterisbanken region were used to reconstruct the sedimentation pattern, depositional history and paleoceanography for this area over the last 250,000 years. The dating and correlation of the sediments were based on oxygen isotope stratigraphy and absolute ages. The hemipelagic deposits near the Vesteris Seamount are characterised by biogenic, ter- restrial and volcanogenic sediment input that varies through time. The area was influenced by sporadic turbidity currents and thermohaline-induced contour currents. Ice-rafted debris occurred nearly throughout the investigated time interval. Primary production was higher during interglacial periods. Filter-feeding epifauna (C. zi~~~t~llt~rst~rji),an indicator of bottom cur- rents, dominated in isotope stages 7 and 5. During deglaciation (stage boundaries 8/7, 6/5 and 2/1, events 3.3 and 3.1), enorinous meltwater inp~~tstabilised the water column, leading to periodic interruptions in deep water renewal. The influence of water masses from the Polar and Atlantic Domains in the Greenland Sea were very variable over time. The oceanic fronts in the Vesterisbanken area were always close together, allowing only a narrow Arctic Domain to exist. -
The East Greenland Rifted Volcanic Margin
GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 24 • 2011 The East Greenland rifted volcanic margin C. Kent Brooks GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING 1 Geological Survey of Denmark and Greenland Bulletin 24 Keywords East Greenland, North Atlantic, rifted volcanic margin, large igneous province, LIP, Palaeogene, basalt, syenite, nephelinite, carbona- tite, uplift. Cover Sundown over the nunataks in the Main Basalts (Skrænterne Fm) to the south of Scoresby Sund. Camped on the glacier, the 1965 Ox- ford University East Greenland Expedition travelled and collected from this area on foot, manhauling equipment on the sledge to the left. The expedition results were published in Fawcett et al. (1973). Frontispiece: facing page Mountains of horizontally layered basalt flows rising to about 2000 m on the south side of Scoresby Sund. Typical trap topography as found throughout most of the Kangerlussuaq–Scoresby Sund inland area. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Department of Geoscience, Aarhus University; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editor of this volume: Adam A. Garde Editorial secretaries: Jane Holst and Esben W. Glendal Referees: Dennis K. Bird (USA) and Christian Tegner (DK) Illustrations: Eva Melskens with contributions from Adam A. Garde Digital photographic work: Benny Schark Graphic production: Kristian A. Rasmussen Printers: Rosendahls · Schultz Grafisk A/S, Albertslund, Denmark Manuscript received: 1 March 2011 Final version approved: 20 September 2011 Printed: 22 December 2011 ISSN 1604-8156 ISBN 978-87-7871-322-3 Citation of the name of this series It is recommended that the name of this series is cited in full, viz. -
The Fish Fauna of Ampe`Re Seamount (NE Atlantic) and the Adjacent
Helgol Mar Res (2015) 69:13–23 DOI 10.1007/s10152-014-0413-4 ORIGINAL ARTICLE The fish fauna of Ampe`re Seamount (NE Atlantic) and the adjacent abyssal plain Bernd Christiansen • Rui P. Vieira • Sabine Christiansen • Anneke Denda • Frederico Oliveira • Jorge M. S. Gonc¸alves Received: 26 March 2014 / Revised: 15 September 2014 / Accepted: 24 September 2014 / Published online: 2 October 2014 Ó Springer-Verlag Berlin Heidelberg and AWI 2014 Abstract An inventory of benthic and benthopelagic stone’’ hypothesis of species dispersal, some differences fishes is presented as a result of two exploratory surveys can be attributed to the local features of the seamounts. around Ampe`re Seamount, between Madeira and the Por- tuguese mainland, covering water depths from 60 to Keywords Deep sea Á Fish distribution Á Ichthyofauna Á 4,400 m. A total of 239 fishes were collected using dif- Seamounts Á Zoogeography ferent types of sampling gear. Three chondrichthyan spe- cies and 31 teleosts in 21 families were identified. The collections showed a vertical zonation with little overlap, Introduction but indications for an affinity of species to certain water masses were only vague. Although most of the species Due to their vertical range and habitat diversity, seamounts present new records for Ampe`re Seamount, all of them often support high fish diversity, as compared to the sur- have been known for the NE Atlantic; endemic species rounding ocean, and some are known as hotspots of were not found. The comparison with fish communities at endemic species (e.g. Shank 2010; Stocks et al. 2012). other NE Atlantic seamounts indicates that despite a high Seamounts are considered to act as ‘‘stepping stones’’ for ichthyofaunal similarity, which supports the ‘‘stepping species dispersal (Almada et al. -
Seamounts What Is a Seamount How Are Seamounts Formed
4/26/10 11. Habitats: Seamounts What is a seamount How are seamounts formed Why are seamounts interesting Seamount Habitat Isolation by distance Stepping Stones and Larval Highways Seamount Fauna Two opposing case seamount studies Anthropogenic impacts to seamounts Dr Rhian G. Waller 28th April 2010 Reading: Samadi et al., 2007 What is a seamount “Mountain rising from the ocean that does not reach sea level” Must rise 1000m above surrounding seafloor Most in deep sea Some do rise to <100m of surface Primarily formed through volcanism Estimated 100,000 seamounts around the globe 60% of those in the Pacific 1 4/26/10 Formation of Seamounts Volcanism, Erosion, Sinking, Plates moving Seamounts ~30,000 seamount globally ~350 ever been visited Kitchingman & Lai, 2004 2 4/26/10 How do we know how many seamounts there are? Soundings Single Beam Slow Multibeam Good for all sizes of seamounts Accurate Slow Satellite altimetry Good for larger seamounts Have to extrapolate for small seamounts The number of seamounts rises, and falls…. Why are seamounts interesting? Majority of the deep sea is abyssal sediments Small “oasis” of life Hydrothermal Vents Seamounts Why are seamounts so biodiverse? High currents Current “forced” around seamounts High nutrients Rich, cold upwelling 3 4/26/10 Why are seamounts interesting? Taylor Column Coriolis Effect Retains water on top of seamount Retain plankton/larvae Highly productive waters High primary production High Transient Feeders Tuna, whales Seamount Habitats -
Seamount Summary Points
Seamount summary points • Seamount classification system • Four key steps were identified in a process to identify and select potential Marine Protected Areas on seamounts (at the scale of an entire seamount as a minimum unit). • Define sets of physical characteristics to identify a range of habitat types • Determine the level of replication required in each category from (1) • Determine the reserve size (30–50% of management area) • The general principle involved here is the use of physical information as a proxy for grouping seamounts in a biologically meaningful way. For most oceanic areas, there are few biological data, but knowledge of physical characteristics is more available, and able to guide seamount classification as a first cut until more information is collected. Seamount definition • Seamounts are defined as geologic features (generally of volcanic origin) extending from the seafloor with an elevation of more than 1000 meters above the abyssal seabed. The principles presented here can and should be applied to features that are geomorphologically distinct from, but ecologically similar to, seamounts. Such features may include: • 1) knolls, vertical elevation of 500-1000m, • 2) Banks • 3) island slopes, • 4) atolls, • 5) continental slope-associated features (e.g. intraplate volcanoes and hills) Seamount habitat type • Substrate type • Sediment type will affect what fauna can occur (although acknowledged that most seamounts will have a wide range of substrate types) • Predominantly hard substrate (basalt, rocky) • Predominantly soft substrate (mud, sand) • Seamount shape • This will in part determine the amount and depth of substrate (especially on summit) • Guyot (flat-topped) • Conical small summit area • Connectivity • Distance between seamounts, and the relationship of seamount direction to current flow will affect the dispersal abilities of fauna • Isolated seamount • Seamount part of a cluster • Seamount part of a linear chain (includes ridge peak system) • Summit depth • Depth is a major determinant of species composition. -
METEOR-Berichte Mid-Atlantic Expedition 2003-2004 Cruise No
METEOR-Berichte Mid-Atlantic Expedition 2003-2004 Cruise No. 60, Leg 1 – 5 November 11., 2003 – April 15., 2004 Kiel (Germany) –Funchal - Fort-de-France - Lisbon (Portugal) Autoren: D. Wallace, B. Christansen, J. Phipps-Morgan, Th. Kuhn, U. Send, Editorial Assistance: Senatskommission für Ozeanographie der Deutschen Forschungsgemeinschaft MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen Leitstelle Deutsche Forschungsschiffe Institut für Meereskunde der Universität Hamburg 2011 The METEOR-Berichte are published at irregular intervals. They are working papers for people who are occupied with the respective expedition and are intended as reports for the funding institutions. The opinions expressed in the METEOR-Berichte are only those of the authors. The METEOR expeditions are funded by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF). The reports are available in PDF format from http://www.dfg-ozean.de/. Editor: DFG Senatskommission für Ozeanographie c/o MARUM – Zentrum für Marine Umweltwissenschaften Universität Bremen Leobener Strasse 28359 Bremen Authors: Dr. Bernd Christiansen Universität Hamburg Telefon: +49(0)40-42838-6670 Institut für Hydrobiologie und Telefax: +49(0)40-42838-6696 Fischereiwissenschaft e-mail: [email protected] Zeiseweg 9, D-22765 Hamburg / Germany Prof. Dr. Jason Phipps Morgan GEOMAR Telefon: +49(0)431-600 2272 Forschungszentrum für Telefax: +49(0)431-600 2922 Marine Geowissenschaften e-mail: [email protected] Abt. Marine Umweltgeologie Wischhofstr. 1-3 24148 Kiel / Germany Dr. Thomas Kuhn Telefon: +49/(0)3731-393398 Department of Economic Geology and Telefax: +49/(0)3731-392610 Leibniz Lab. for Applied Marine Research e-mail: [email protected] Institute of Mineralogy Freiberg University of Mining and Technology Brennhausgasse 14 D-09596 Freiberg / Germany Prof. -
Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin - a New Type of Cryptoendolithic Fungi
http://www.diva-portal.org This is the published version of a paper published in PLoS One. Citation for the original published paper (version of record): Ivarsson, M., Peckmann, J., Tehler, A., Broman, C., Bach, W. et al. (2015) Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin - A New Type of Cryptoendolithic Fungi. PLoS One, 10 http://dx.doi.org/10: e0133368 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1580 RESEARCH ARTICLE Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin – A New Type of Cryptoendolithic Fungi Magnus Ivarsson1*, Jörn Peckmann2, Anders Tehler3, Curt Broman4, Wolfgang Bach5, Katharina Behrens5, Joachim Reitner6, Michael E. Böttcher7, Lena Norbäck Ivarsson8 1 Department of Palaeobiology and the Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden, 2 Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Vienna, Austria, 3 Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden, 4 Department of Geological Sciences, Stockholm University, Svante Arrheniusväg 8, Stockholm, Sweden, 5 MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany, 6 Geobiology Group, Geoscience Centre, Georg-August University, Göttingen, Germany, 7 Geochemistry & Isotope Biogeochemistry Group, Department for Marine Geology, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany, 8 School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels Allé 7, Stockholm, Sweden * [email protected] OPEN ACCESS Citation: Ivarsson M, Peckmann J, Tehler A, Broman C, Bach W, Behrens K, et al.