Seamount Summary Points

Total Page:16

File Type:pdf, Size:1020Kb

Seamount Summary Points Seamount summary points • Seamount classification system • Four key steps were identified in a process to identify and select potential Marine Protected Areas on seamounts (at the scale of an entire seamount as a minimum unit). • Define sets of physical characteristics to identify a range of habitat types • Determine the level of replication required in each category from (1) • Determine the reserve size (30–50% of management area) • The general principle involved here is the use of physical information as a proxy for grouping seamounts in a biologically meaningful way. For most oceanic areas, there are few biological data, but knowledge of physical characteristics is more available, and able to guide seamount classification as a first cut until more information is collected. Seamount definition • Seamounts are defined as geologic features (generally of volcanic origin) extending from the seafloor with an elevation of more than 1000 meters above the abyssal seabed. The principles presented here can and should be applied to features that are geomorphologically distinct from, but ecologically similar to, seamounts. Such features may include: • 1) knolls, vertical elevation of 500-1000m, • 2) Banks • 3) island slopes, • 4) atolls, • 5) continental slope-associated features (e.g. intraplate volcanoes and hills) Seamount habitat type • Substrate type • Sediment type will affect what fauna can occur (although acknowledged that most seamounts will have a wide range of substrate types) • Predominantly hard substrate (basalt, rocky) • Predominantly soft substrate (mud, sand) • Seamount shape • This will in part determine the amount and depth of substrate (especially on summit) • Guyot (flat-topped) • Conical small summit area • Connectivity • Distance between seamounts, and the relationship of seamount direction to current flow will affect the dispersal abilities of fauna • Isolated seamount • Seamount part of a cluster • Seamount part of a linear chain (includes ridge peak system) • Summit depth • Depth is a major determinant of species composition. As the seamounts by definition arise from abyssal depths (in most cases), elevation is also a relative measure of seamount size. • 0–200 m • 201–1000 m • 1001–2000 m • >2000 m • Oxygen concentration (OMZ) • Oxygen levels can also be important for survival of certain groups of species • 0–1 ml/l • 1–3 ml/l • >3 ml/l • Biogeographic zone • This reflects oceanographic conditions (water mass). Various zonation systems could be applied (e.g.. Longhurst, Large Marine Ecosystem, Mexico Workshop) • Subtropical • Tropical • Subantarctic • Antarctic • Convergence/Frontal zone • Volcanic activity • This identifies whether hydrothermal vent communities may exist, and also whether volcanic activity such as lava flows could impose significant natural change. • Yes • No • Critical Ecological Habitat • Identifies the known presence of significant ecologically activity, such as the presence of VME, coral reefs, sponge gardens, spawning grounds, nursery areas. This is seen as a SECOND TIER criterion, where biological knowledge will be applied to the initial selection of seamount groups based on the above physical parameters. • HOW THE SYSTEM CAN WORK • Use the above factors to create a number of groups of seamounts (e.g. hard substrate, summit depth <200 m, conical shape; hard substrate, summit depth 1001–2000m, guyot). • Identify seamounts within the groups for which biological information is available that may indicate critical ecological habitat. • Select 40% of the seamounts in each group (assuming entire seamount protected, based on number rather than size) Then incorporate biological information where available and appropriate (below is Seamounts Online, April 2006, blue 0-10 records, green 10-20, yellow 20-30, orange 30-40, red >40) only red are likely to be of much use…). .
Recommended publications
  • Inferences on Potential Seamount Locations from Mid-Resolution
    T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, Page 7 INFERENCES ON POTENTIAL SEAMOUNT LOCATIONS FROM MID- RESOLUTION BATHYMETRIC DATA Adrian Kitchingman and Sherman Lai Fisheries Centre, The University of British Columbia. 2259 Lower Mall, Vancouver, B.C., V6T 1Z4, Canada [email protected]; [email protected] ABSTRACT Seamounts are underwater volcanoes that did not grow tall enough to break to the sea surface and turn into islands. Once formed, seamounts tend to gradually sink under their own weight and the subsidence of the lithosphere. The ocean floor is littered with these former seamounts, here called ‘seamounds’. Seamounts occur throughout the world's oceans, but their number (which may surpass 50,000) is difficult to estimate, even roughly, because it depends on the resolution of the bathymetric map used and the specific definition of a seamount used, i.e., the limits used to distinguish between seamounts and seamounds. Here, the locations of a subset of the seamounts of the world were identified using two algorithms relying on the depth differences between adjacent cells of a digital global elevation map distributed by the U.S. National Oceanographic and Atmospheric Agency (NOAA). The overlap of both algorithms resulted in a set of about 14,000 seamounts, but a different number would have been found had we used different thresholds. Known seamount locations supplied by NOAA and SeamountsOnline (http://seamounts.sdsc.edu) were compared against the corresponding seamounts located by the study, which led to some degree of ground-truthing. The coordinates of the seamounts identified in this study are available on the CD-ROM attached to this report, and on http://www.seaaroundus.org.
    [Show full text]
  • Deep-Sea Mining: the Basics
    A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining.
    [Show full text]
  • Importance of Seamount-Like Features for Conserving Mediterranean Marine Habitats and Threatened Species
    Nº. 1105 IMPORTANCE OF SEAMOUNT-LIKE FEATURES FOR CONSERVING MEDITERRANEAN MARINE HABITATS AND THREATENED SPECIES Ricardo Aguilar, Xavier Pastor, Silvia García & Pilar Marín Oceana. Leganitos, 47 - 28013 Madrid. Spain - *[email protected] INTRODUCTION HABITAT LOCATION MAIN SPECIES 16 of the more than 200 seamount‑like peaks in the Mediterranean1 have been observed using ROV. Coral reefs 4, 5, 6, 7 Lophelia pertusa, Madrepora oculata Desmophyllum dianthus, Stenocyathus vermiformis, The findings, which include carnivorous sponges, elasmobranches, coral gardens, sponge aggregations, Cold water corals All sites Caryophyllia spp. Pourtalosmilia anthophyllites, Javania caileti, coralligenous beds, as well as species new to science like the giant foraminifera Spiculosiphon oceana, Anomocora fecunda, Dendrophyllia spp. Paramuricea spp., Eunicella spp., Viminella flagellum, or new to the Mediterranean, like the scleractinian Anomocora fecunda, underscore the importance of 1, 2, 3, 4, 5, Callogorgia verticillata, Acanthogorgia spp., Placogorgia these geological features as hotspots and shelters/refuges species and habitats that are threatened, in Gorgonian/coral gardens: 6, 7, 8, 9, 11, coronata, Swiftia pallida, Muriceides lepida, Villogorgia regression, or rare in other Mediterranean areas. 12, 13, 14 bebrycoides, Bebryce mollis, Nicella granifera 1, 4, 5, 6, 7, Leiopathes glaberrima, Antipathes dichotoma, Antipathella METHODOLOGY Black corals Since 2006, Oceana has carried out six expeditions in the Mediterranean performing 129 ROV’s dives 9, 11, 15, 16 subpinnata, Parantipathes larix Isidella elongata, Pennatula spp., Pteroeides griseum, 2, 3, 4, 7, 8, over 16 seamounts, between ‑37 and ‑638 meters deep. Soft bottoms’ octocorals Virgularia mirabilis, Veretillun cynomorium, Kophobelemnon 9, 11, 14, 16 RESULTS stelliferum, Funiculina quadrangularis 2 3, 4, 5, 6, 7, Asconema setubalense, Phakellia spp., Axinella spp.
    [Show full text]
  • Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance
    Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance Contributors: J. Anthony Koslow, Peter Auster, Odd Aksel Bergstad, J. Murray Roberts, Alex Rogers, Michael Vecchione, Peter Harris, Jake Rice, Patricio Bernal (Co-Lead members) 1. Physical, chemical, and ecological characteristics 1.1 Seamounts Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m. Only 6.5 per cent of the deep seafloor has been mapped, so the global number of seamounts must be estimated, usually from a combination of satellite altimetry and multibeam data as well as extrapolation based on size-frequency relationships of seamounts for smaller features. Estimates have varied widely as a result of differences in methodologies as well as changes in the resolution of data. Yesson et al. (2011) identified 33,452 seamount and guyot features > 1000 m in height and 138,412 knolls (100 – 1000 m), whereas Harris et al. (2014) identified 10,234 seamount and guyot features, based on a stricter definition that restricted seamounts to conical forms. Estimates of total abundance range to >100,000 seamounts and to 25 million for features > 100 m in height (Smith 1991; Wessel et al., 2010).
    [Show full text]
  • Seabed Mapping: a Brief History from Meaningful Words
    geosciences Review Seabed Mapping: A Brief History from Meaningful Words Pedro Smith Menandro and Alex Cardoso Bastos * Marine Geosciences Lab (Labogeo), Departmento Oceanografia, Universidade Federal do Espírito Santo, Vitória-ES 29075-910, Brazil; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 7 July 2020; Published: 16 July 2020 Abstract: Over the last few centuries, mapping the ocean seabed has been a major challenge for marine geoscientists. Knowledge of seabed bathymetry and morphology has significantly impacted our understanding of our planet dynamics. The history and scientific trends of seabed mapping can be assessed by data mining prior studies. Here, we have mined the scientific literature using the keyword “seabed mapping” to investigate and provide the evolution of mapping methods and emphasize the main trends and challenges over the last 90 years. An increase in related scientific production was observed in the beginning of the 1970s, together with an increased interest in new mapping technologies. The last two decades have revealed major shift in ocean mapping. Besides the range of applications for seabed mapping, terms like habitat mapping and concepts of seabed classification and backscatter began to appear. This follows the trend of investments in research, science, and technology but is mainly related to national and international demands regarding defining that country’s exclusive economic zone, the interest in marine mineral and renewable energy resources, the need for spatial planning, and the scientific challenge of understanding climate variability. The future of seabed mapping brings high expectations, considering that this is one of the main research and development themes for the United Nations Decade of the Oceans.
    [Show full text]
  • Microbiology of Seamounts Is Still in Its Infancy
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in MOUNTAINS IN THE SEA Oceanography MICROBIOLOGY journal of The 23, Number 1, a quarterly , Volume OF SEAMOUNTS Common Patterns Observed in Community Structure O ceanography ceanography S BY DAVID EmERSON AND CRAIG L. MOYER ociety. © 2010 by The 2010 by O ceanography ceanography O ceanography ceanography ABSTRACT. Much interest has been generated by the discoveries of biodiversity InTRODUCTION S ociety. ociety. associated with seamounts. The volcanically active portion of these undersea Microbial life is remarkable for its resil- A mountains hosts a remarkably diverse range of unusual microbial habitats, from ience to extremes of temperature, pH, article for use and research. this copy in teaching to granted ll rights reserved. is Permission S ociety. ociety. black smokers rich in sulfur to cooler, diffuse, iron-rich hydrothermal vents. As and pressure, as well its ability to persist S such, seamounts potentially represent hotspots of microbial diversity, yet our and thrive using an amazing number or Th e [email protected] to: correspondence all end understanding of the microbiology of seamounts is still in its infancy. Here, we of organic or inorganic food sources. discuss recent work on the detection of seamount microbial communities and the Nowhere are these traits more evident observation that specific community groups may be indicative of specific geochemical than in the deep ocean.
    [Show full text]
  • Intern Report
    Insights from abyssal lebensspuren Jennifer Durden, University of Southampton, UK Mentors: Ken Smith, Jr., Christine Huffard, Katherine Dunlop Summer 2014 Keywords: lebensspuren, traces, abyss, megafauna, deposit-feeding, benthos, sediment ABSTRACT The seasonal input of food to the abyss impacts the benthic community, and changes to that temporal cycle, through changes to the climate and surface ocean conditions impact the benthic assemblage. Most of the benthic fauna are deposit feeders, and many leave traces (‘lebensspuren’) of their activity in the sediment. These traces provide an avenue for examining the temporal variations in the activity of these animals, with insights into the usage of food inputs to the system. Traces of a variety of functions were identified in photographs captured in 2011 and 2012 from Station M, a soft-sedimented abyssal site in the northeast Pacific. Lebensspuren creation, holothurian tracking, and lebensspuren duration were estimated from hourly time-lapse images, while trace densities, diversity and seabed coverage were assessed from photographs captured with a seabed- transiting vehicle. The creation rates and duration of traces on the seabed appeared to vary over time, and may have been related to food supply, as may tracking rates of holothurians. The density, diversity and seabed coverage by lebensspuren of different types varied with food supply, with different lag times for POC flux and salp coverage. These are interpreted to be due to selectivity of 1 deposit feeders, and different response times between trace creators. These variations shed light on the usage of food inputs to the abyss. INTRODUCTION Deep-sea benthic communities rely on a seasonal food supply of detritus from the surface ocean (Billett et al., 1983, Rice et al., 1986).
    [Show full text]
  • Worksheets on Climate Change: Sea Level Rise
    EDUCATION FOR SUSTAINABLE DEVELOPMENT WORKSHEETS ON CLIMATE CHANGE Sea level rise Consequences for coastal and lowland areas: Bangladesh and the Netherlands Sea level rise – Consequences for coastal and lowland areas: Bangladesh and the Netherlands © Germanwatch 2014 Sea level rise Consequences for coastal and lowland areas: Bangladesh and the Netherlands As a consequence of the anthropogenic greenhouse effect A comparison of the two countries, the Netherlands and the scientific community predicts an increase in average Bangladesh, both of which are potentially very much jeop- global temperature and resulting sea level rise. Heated ardised by sea level rise, clearly illustrates the likely im- water, however, expands only slowly because of the heat pacts for humans and the environment, but also shows transfer from the atmosphere to the sea. For this reason, how different the capacities of individual countries are the sea responds to climate change like a slow-to-react concerning their ability to adapt and to protect them- monster – slow but persistent. In the 20th century the selves from the consequences. Bangladesh, one of the sea level already rose by an average of 12 to 22 cm. The poorest and at the same time most densely populated Intergovernmental Panel on Climate Change (IPCC) con- countries in the world, is also one of the countries which cludes that, as a result of climate change, by 2100 the rise will be most affected by the expected sea level rise. in sea levels could increase worldwide by up to almost 1 metre compared to the mean sea level in the years Flooding has already caused damage up to 100 km inland 1986–2005.
    [Show full text]
  • Pressure 4117, Tide 5217, Wave and Tide 5218
    TD 302 OPERATING MANUAL PRESSURE SENSOR 4117/4117R TIDE SENSOR 5217/5217R WAVE & TIDE SENSOR 5217/5217R January 2014 PRESSURE SENSOR 4117/4117R TIDE SENSOR 5217/5217R WAVE AND TIDE SENSOR 5218/5218R Page 2 Aanderaa Data Instruments AS – TD302 1st Edition 30 June 2013 Preliminary 2nd Edition 05 September 2003 New version including general updates in text. Rebranded, Frame Work 3 update, please refer Product change notification AADI Document ID:DA-50009-01, Date: 09 December 2011 (ref Appendix 6 ). 3rd Edition 14 January 2014 New property “Installation Depth” added for Tide sensors, effective version 8.1.1 © Copyright: Aanderaa Data Instruments AS January 2014 - TD 302 Operating Manual for Pressure 4117/4117R Tide 5217/5217R, Wave & Tide 5218/5218R Page 3 Table of Contents Introduction .............................................................................................................................................................. 6 Purpose and scope ................................................................................................................................................ 6 Document overview.............................................................................................................................................. 6 Applicable documents .......................................................................................................................................... 7 Abbreviations .......................................................................................................................................................
    [Show full text]
  • Global Open Oceans and Deep Seabed (Goods) - Biogeographic Classification
    CBD Distr. GENERAL UNEP/CBD/SBSTTA/14/INF/10 29 April 2010 ORIGINAL: ENGLISH SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Fourteenth meeting Nairobi, 10-21 May 2010 Item 3.1.3 of the provisional agenda * GLOBAL OPEN OCEANS AND DEEP SEABED (GOODS) - BIOGEOGRAPHIC CLASSIFICATION Note by the Executive Secretary 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice, IOC Technical Series No.84 on Global Open Oceans and Deep Seabed (GOODS) - Biogeographic Classification, submitted by the United Nations Educational, Scientific and Cultural Organization/Intergovernmental Oceanographic Commission, pursuant to paragraph 6of decision IX/20. 2. This report was also considered by the CBD Expert Workshop on Scientific and Technical Guidance on the Use of Biogeographic Classification Systems and Identification of Marine Areas Beyond National Jurisdiction in Need of Protection, held in Ottawa, from 29 September to 2 October 2009. 3. The document is circulated in the form and language in which it was received by the Secretariat of the Convention on Biological Diversity. * UNEP/CBD/SBSTTA/14/1 /... In order to minimize the environmental impacts of the Secretariat’s processes, and to contribute to the Secretary-General’s initiative f or a C-Neutral UN, this document is printed in limited numbers. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Edited by: Marjo Vierros (UNU-IAS), Ian Cresswell (Australia), Elva Escobar Briones (Mexico), Jake Rice (Canada), and Jeff Ardron (Germany) UNESCO 2009 goods inside 2.indd 1 24/03/09 14:55:52 Global Open Oceans and Deep Seabed (GOODS) biogeographic classification Authors Contributors Vera N.
    [Show full text]
  • Seamounts  What Is a Seamount  How Are Seamounts Formed
    4/26/10 11. Habitats: Seamounts What is a seamount How are seamounts formed Why are seamounts interesting Seamount Habitat Isolation by distance Stepping Stones and Larval Highways Seamount Fauna Two opposing case seamount studies Anthropogenic impacts to seamounts Dr Rhian G. Waller 28th April 2010 Reading: Samadi et al., 2007 What is a seamount “Mountain rising from the ocean that does not reach sea level” Must rise 1000m above surrounding seafloor Most in deep sea Some do rise to <100m of surface Primarily formed through volcanism Estimated 100,000 seamounts around the globe 60% of those in the Pacific 1 4/26/10 Formation of Seamounts Volcanism, Erosion, Sinking, Plates moving Seamounts ~30,000 seamount globally ~350 ever been visited Kitchingman & Lai, 2004 2 4/26/10 How do we know how many seamounts there are? Soundings Single Beam Slow Multibeam Good for all sizes of seamounts Accurate Slow Satellite altimetry Good for larger seamounts Have to extrapolate for small seamounts The number of seamounts rises, and falls…. Why are seamounts interesting? Majority of the deep sea is abyssal sediments Small “oasis” of life Hydrothermal Vents Seamounts Why are seamounts so biodiverse? High currents Current “forced” around seamounts High nutrients Rich, cold upwelling 3 4/26/10 Why are seamounts interesting? Taylor Column Coriolis Effect Retains water on top of seamount Retain plankton/larvae Highly productive waters High primary production High Transient Feeders Tuna, whales Seamount Habitats
    [Show full text]
  • BEACH PROCESSES and COASTAL ENVIRONMENTS Beach Reading Material
    BEACH PROCESSES AND COASTAL ENVIRONMENTS Beach Reading Material “Inshore oceanography”, Anikouchine and Sternberg The World Ocean, Prentice-Hall COASTAL FEATURES Cross section Map view Terminology for Coastal Environment Beach – extending from MLLW to dunes/cliff Shoreline – where land and ocean meet Spit – linear extension of shoreline, due to accumulation of sediment Barrier – spit or island seaward of land, usually ~parallel to trend of land Bars and troughs – seabed features in surf zone Berm – relatively flat region of beach, behind shoreline Foreshore – seaward sloping surface, located seaward of berm Backshore – berm and dunes Inlet/washover – means to transport beach sediment landward, due to tides and storms (respectively) Longshore (littoral) drift or transport – water and sediment movement parallel to beach COASTAL FEATURES Cross section Map view Factors affecting formation of wind waves Duration wind blows Wind speed Distance over which wind blows (fetch) Terminology for Describing Waves T = wave period = time between two wave crests passing a point In deep water, wave speed increases with wavelength Therefore, waves sort themselves as they travel from source area; waves with large wavelength reach beach first = swell Changing Wave Character from Source to Surf Wave shape Wave characteristics change with long travel distance, because waves sort themselves confused sea single wave shape pointed wave crest Waves in deep water Water molecules move in closed circular orbits Diameter of orbit decreases with depth below water surface
    [Show full text]