Making of a Chip” Illustrations

Total Page:16

File Type:pdf, Size:1020Kb

Making of a Chip” Illustrations “Making of a Chip” Illustrations 22nm 3D/Trigate Transistors – Version January 2012 Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual steps. For publishing purposes there are high resolution JPEG files posted to the Intel website: www.intel.com/pressroom/kits/chipmaking Optionally same resolution (uncompressed) images are available as well. Please request them from [email protected] Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 2 Sand / Ingot Melted Silicon – Monocrystalline Silicon Ingot – Sand scale: wafer level (~300mm / 12 inch) scale: wafer level (~300mm / 12 inch) Silicon is the second most abundant element in the earth's crust. Common In order to be used for computer chips, The ingot has a diameter of 300mm and sand has a high percentage of silicon. silicon must be purified so there is less weighs about 100 kg. Silicon – the starting material for than one alien atom per billion. It is pulled computer chips – is a semiconductor, from a melted state to form a solid which meaning that it can be readily turned is a single, continuous and unbroken into an excellent conductor or an crystal lattice in the shape of a cylinder, insulator of electricity, by the known as an ingot. introduction of minor amounts of impurities. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 3 Ingot / Wafer Wafer – scale: wafer level (~300mm / 12 inch) The wafers are polished until they have flawless, Ingot Slicing – mirror-smooth surfaces. Intel buys manufacturing- scale: wafer level (~300mm / 12 inch) ready wafers from its suppliers. Wafer sizes have The ingot is cut into individual silicon discs increased over time, resulting in decreased costs per called wafers. Each wafer has a diameter of chip. when Intel began making chips, wafers were only 300mm and is about 1 mm thick. 50mm in diameter. Today they are 300mm, and the industry has a plan to advance to 450mm. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 4 Fabrication of chips on a wafer consists of hundreds of precisely controlled steps which result in a series of patterned layers of various materials one on top of another. What follows is a sample of the most important steps in this complex process. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 5 Photolithography Applying Photoresist – Exposure – scale: wafer level (~300mm / 12 inch) scale: wafer level (~300mm / 12 inch) Resist Development– Photolithography is the process by which The photoresist is hardened, and portions of it are scale: wafer level (~300mm / 12 inch) a specific pattern is imprinted on the exposed to ultraviolet (UV) light, making it soluble. The soluble photoresist is removed by a wafer. It starts with the application of a The exposure is done using masks that act like chemical process, leaving a photoresist liquid known as photoresist, which is stencils, so only a specific pattern of photoresist pattern determined by what was on the evenly poured onto the wafer while it becomes soluble. The mask has an image of the mask. spins. It gets its name from the fact that pattern that needs to go on the wafer; it is optically it is sensitive to certain frequencies of reduced by a lens, and the exposure tool steps and light (“photo”) and is resistant to certain repeats across the wafer to form the same image a chemicals that will be used later to large number of times. remove portions of a layer of material (“resist”). Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 6 Ion Implantation Ion Implantation– scale: wafer level (~300mm / 12 inch) Removing Photoresist– The wafer with patterned photoresist is Begin Transistor Formation– scale: wafer level (~300mm / 12 inch) bombarded with a beam of ions (positively or scale: transistor level (~50-200nm) After ion implantation, the photoresist is negatively charged atoms) which become Here we zoom into a tiny part of the removed and the resulting wafer has a embedded beneath the surface in the regions not wafer, where a single transistor will be pattern of doped regions in which covered by photoresist. This process is called formed. The green region represents transistors will be formed. doping, because impurities are introduced into doped silicon. Today’s wafers can have the silicon. This alters the conductive properties hundreds of billions of such regions of the silicon (making it conductive or insulating, which will house transistors. depending on the type of ion used) in selected locations. Here we show the creation of wells, which are regions within which transistors will be formed. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 7 Etching Etch– scale: transistor level (~50-200nm) In order to create a fin for a tri-gate Removing Photoresist – transistor, a pattern of material called scale: transistor level (~50-200nm) a hard mask (blue) is applied using the The hard mask is chemically removed, leaving a tall, photolithography process just thin silicon fin which will contain the channel of a described. Then a chemical is applied transistor. to etch away unwanted silicon, leaving behind a fin with a layer of hard mask on top. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 8 Temporary Gate Formation Silicon Dioxide Gate Dielectric– scale: transistor level (~50-200nm) Polysilicon Gate Electrode– Insulator– Using a photolithography step, scale: transistor level (~50-200nm) portions of the transistor are covered scale: transistor level (~50-200nm) with photoresist and a thin silicon Again using a photolithography step, a In another oxidation step, a silicon dioxide dioxide layer (red) is created by temporary layer of polycrystalline silicon layer is created over the entire wafer inserting the wafer in an oxygen-filled (yellow) is created. This becomes a (red/transparent layer) to insulate this tube-furnace. This becomes a temporary gate electrode. transistor from other elements. temporary gate dielectric. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 9 Intel uses a “gate last” (also known as “replacement metal gate”) technique for creating transistor metal gates. This is done in order to avoid transistor stability problems which otherwise might arise as a result of some subsequent high temperature process steps. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 10 “Gate-Last” High-k/Metal Gate Formation Removal of Sacrificial Gate– Applying High-k Dielectric – Metal Gate– scale: transistor level (~50-200nm) scale: transistor level (~50-200nm) scale: transistor level (~50-200nm) Using a masking step, the temporary Individual molecular layers are applied to the A metal gate electrode (blue) is formed (sacrificial) gate electrode and gate surface of the wafer in a process called “atomic over the wafer and, using a lithography dielectric are etched away. The actual layer deposition”. The yellow layers shown step, removed from regions other than gate will now be formed; because the here represent two of these. Using a where the gate electrode is desired. The first gate was removed, this procedure photolithography step, the high-k material is combination of this and the high-k material is known as “gate last”. etched away from the undesired areas such as (thin yellow layer) gives the transistor above the transparent silicon dioxide. much better performance and reduced leakage than would be possible with a traditional silicon dioxide/polysilicon gate. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 11 Metal Deposition Electroplating – Ready Transistor – scale: transistor level (~50-200nm) After Electroplating – scale: transistor level (~50-200nm) The wafers are put into a copper sulphate scale: transistor level (~50-200nm) This transistor is close to being finished. solution at this stage. The copper ions are On the wafer surface the copper ions Three holes have been etched into the deposited onto the transistor thru a settle as a thin layer of copper. insulation layer (red color) above the process called electroplating. The copper transistor. These three holes will be ions travel from the positive terminal filled with copper or other material (anode) to the negative terminal (cathode) which will make up the connections to which is represented by the wafer. other transistors. Copyright © 2012, Intel Corporation. All rights reserved. Intel, Intel logo and Intel Core are trademarks of Intel Corporation in the U.S. and other countries. 12 Metal Layers Metal Layers – scale: transistor level (six transistors combined ~500nm) Multiple metal layers are created to interconnect (think: wires) all the transistors on Polishing – the chip in a specific configuration. How these connections have to be “wired” is scale: transistor level (~50-200nm) determined by the architecture and design teams that develop the functionality of The excess material is mechanically the respective processor (e.g.
Recommended publications
  • Microchip Manufacturing
    Si3N4 Deposition & the Virtual Chemical Vapor Deposition Lab Making a transistor, the general process A closer look at chemical vapor deposition and the virtual lab Images courtesy Silicon Run Educational Video, VCVD Lab Screenshot Why Si3N4 Deposition…Making Microprocessors http://www.sonyericsson.com/cws/products/mobilephones /overview/x1?cc=us&lc=en http://vista.pca.org/yos/Porsche-911-Turbo.jpg On a wafer, billions of transistors are housed on a single square chip. One malfunctioning transistor could cause a chip to short-circuit, ruining the chip. Thus, the process of creating each microscopic transistor must be very precise. Wafer image: http://upload.wikimedia.org/wikipedia/fr/thumb/2/2b/PICT0214.JPG/300px-PICT0214.JPG What size do you think an individual transistor being made today is? Size of Transistors One chip is made of millions or billions of transistors packed into a length and width of less than half an inch. Channel lengths in MOSFET transistors are less than a tenth of a micrometer. Human hair is approximately 100 micrometers in diameter. Scaling of successive generations of MOSFETs into the nanoscale regime (from Intel). Transistor: MOS We will illustrate the process sequence of creating a transistor with a Metal Oxide Semiconductor(MOS) transistor. Wafers – 12” Diameter ½” to ¾” Source Gate Drain conductor Insulator n-Si n-Si p-Si Image courtesy: Pro. Milo Koretsky Chemical Engineering Department at OSU IC Manufacturing Process IC Processing consists of selectively adding material (Conductor, insulator, semiconductor) to, removing it from or modifying it Wafers Deposition / Photo/ Ion Implant / Pattern Etching / CMP Oxidation Anneal Clean Clean Transfer Loop (Note that these steps are not all the steps to create a transistor.
    [Show full text]
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]
  • Recommendation to Handle Bare Dies
    Recommendation to handle bare dies Rev. 1.3 General description This application note gives recommendations on how to handle bare dies* in Chip On Board (COB), Chip On Glass (COG) and flip chip technologies. Bare dies should not be handled as chips in a package. This document highlights some specific effects which could harm the quality and yield of the production. *separated piece(s) of semiconductor wafer that constitute(s) a discrete semiconductor or whole integrated circuit. International Electrotechnical Commission, IEC 62258-1, ed. 1.0 (2005-08). A dedicated vacuum pick up tool is used to manually move the die. Figure 1: Vacuum pick up tool and wrist-strap for ESD protection Delivery Forms Bare dies are delivered in the following forms: Figure 2: Unsawn wafer Application Note – Ref : APN001HBD1.3 FBC-0002-01 1 Recommendation to handle bare dies Rev. 1.3 Figure 3: Unsawn wafer in open wafer box for multi-wafer or single wafer The wafer is sawn. So please refer to the E-mapping file from wafer test (format: SINF, eg4k …) for good dies information, especially when it is picked from metal Film Frame Carrier (FFC). Figure 4: Wafer on Film Frame Carrier (FFC) Figure 5: Die on tape reel Figure 6: Waffle pack for bare die Application Note – Ref : APN001HBD1.3 FBC-0002-01 2 Recommendation to handle bare dies Rev. 1.3 Die Handling Bare die must be handled always in a class 1000 (ISO 6) clean room environment: unpacking and inspection, die bonding, wire bonding, molding, sealing. Handling must be reduced to the absolute minimum, un-necessary inspections or repacking tasks have to be avoided (assembled devices do not need to be handled in a clean room environment since the product is already well packed) Use of complete packing units (waffle pack, FFC, tape and reel) is recommended and remaining quantities have to be repacked immediately after any process (e.g.
    [Show full text]
  • From Sand to Circuits
    From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second.
    [Show full text]
  • Thin-Film Silicon Solar Cells
    SOLAR CELLS Chapter 7. Thin-Film Silicon Solar Cells Chapter 7. THIN-FILM SILICON SOLAR CELLS 7.1 Introduction The simplest semiconductor junction that is used in solar cells for separating photo- generated charge carriers is the p-n junction, an interface between the p-type region and n- type region of one semiconductor. Therefore, the basic semiconductor property of a material, the possibility to vary its conductivity by doping, has to be demonstrated first before the material can be considered as a suitable candidate for solar cells. This was the case for amorphous silicon. The first amorphous silicon layers were reported in 1965 as films of "silicon from silane" deposited in a radio frequency glow discharge1. Nevertheless, it took more ten years until Spear and LeComber, scientists from Dundee University, demonstrated that amorphous silicon had semiconducting properties by showing that amorphous silicon could be doped n- type and p-type by adding phosphine or diborane to the glow discharge gas mixture, respectively2. This was a far-reaching discovery since until that time it had been generally thought that amorphous silicon could not be doped. At that time it was not recognised immediately that hydrogen played an important role in the newly made amorphous silicon doped films. In fact, amorphous silicon suitable for electronic applications, where doping is required, is an alloy of silicon and hydrogen. The electronic-grade amorphous silicon is therefore called hydrogenated amorphous silicon (a-Si:H). 1 H.F. Sterling and R.C.G. Swann, Solid-State Electron. 8 (1965) p. 653-654. 2 W. Spear and P.
    [Show full text]
  • Semiconductor Industry
    Semiconductor industry Heat transfer solutions for the semiconductor manufacturing industry In the microelectronics industry a the cleanroom, an area where the The following applications are all semiconductor fabrication plant environment is controlled to manufactured in a semicon fab: (commonly called a fab) is a factory eliminate all dust – even a single where devices such as integrated speck can ruin a microcircuit, which Microchips: Manufacturing of chips circuits are manufactured. A business has features much smaller than with integrated circuits. that operates a semiconductor fab for dust. The cleanroom must also be LED lighting: Manufacturing of LED the purpose of fabricating the designs dampened against vibration and lamps for lighting purposes. of other companies, such as fabless kept within narrow bands of PV industry: Manufacturing of solar semiconductor companies, is known temperature and humidity. cells, based on Si wafer technology or as a foundry. If a foundry does not also thin film technology. produce its own designs, it is known Controlling temperature and Flat panel displays: Manufacturing of as a pure-play semiconductor foundry. humidity is critical for minimizing flat panels for everything from mobile static electricity. phones and other handheld devices, Fabs require many expensive devices up to large size TV monitors. to function. The central part of a fab is Electronics: Manufacturing of printed circuit boards (PCB), computer and electronic components. Semiconductor plant Waste treatment The cleanroom Processing equipment Preparation of acids and chemicals Utility equipment Wafer preparation Water treatment PCW Water treatment UPW The principal layout and functions of would be the least complex, requiring capacities. Unique materials combined the fab are similar in all the industries.
    [Show full text]
  • A New Slicing Method of Monocrystalline Silicon Ingot by Wire EDM
    cf~ Paper International Journal of Electrical Machining, No. 8, January 2003 A New Slicing Method of Monocrystalline Silicon Ingot by Wire EDM Akira OKADA *, Yoshiyuki UNO *, Yasuhiro OKAMOTO*, Hisashi ITOH* and Tameyoshi HlRANO** (Received May 28, 2002) * Department of Mechanical Engineering, Okayama University, Okayama 700-8530, Japan ** Toyo Advanced Technologies Co., Ltd., Hiroshima 734-8501, Japan Abstract Monocrystalline silicon is one of the most important materials in the semiconductor industry because of its many excellent properties as a semiconductor. In the manufacturing process of silicon wafers, inner diameter(lD) blade and multi wire saw have conventionally been used for slicing silicon ingots. However, some problems in efficiency, accuracy, slurry treatment and contamination are experienced when applying this method to large­ scale wafers of 12 or 16 inch diameter expected to be used in the near future. Thus, the improvement of conventional methods or a new slicing method is strongly required. In this study, the possibility of slicing a silicon ingot by wire EDM was discussed and the machining properties were experimentally investigated. A silicon wafer used as substrate for epitaxial film growth has low resistivity in the order of 0.01 g .cm, which makes it possible to cut silicon ingots by wire EDM. It was clarified that the new wire EDM has potential for application as a new slicing method, and that the surface roughness using this method is as small as that using the conventional multi wire saw method. Moreover, it was pointed out that the contamination due to the adhesion and diffusion of wire electrode material into the machined surface can be reduced by wire EDM under the condition of low current and long discharge duration.
    [Show full text]
  • Laser Grinding of Single-Crystal Silicon Wafer for Surface Finishing and Electrical Properties
    micromachines Article Laser Grinding of Single-Crystal Silicon Wafer for Surface Finishing and Electrical Properties Xinxin Li 1,†, Yimeng Wang 1,† and Yingchun Guan 1,2,3,4,* 1 School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing 100083, China; [email protected] (X.L.); [email protected] (Y.W.) 2 National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, 37 Xueyuan Road, Beijing 100083, China 3 International Research Institute for Multidisciplinary Science, Beihang University, 37 Xueyuan Road, Beijing 100083, China 4 Ningbo Innovation Research Institute, Beihang University, Beilun District, Ningbo 315800, China * Correspondence: [email protected] † The two authors contributed equally to this work. Abstract: In this paper, we first report the laser grinding method for a single-crystal silicon wafer machined by diamond sawing. 3D laser scanning confocal microscope (LSCM), X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), laser micro- Raman spectroscopy were utilized to characterize the surface quality of laser-grinded Si. Results show that SiO2 layer derived from mechanical machining process has been efficiently removed after laser grinding. Surface roughness Ra has been reduced from original 400 nm to 75 nm. No obvious damages such as micro-cracks or micro-holes have been observed at the laser-grinded surface. In addition, laser grinding causes little effect on the resistivity of single-crystal silicon wafer. The insights obtained in this study provide a facile method for laser grinding silicon wafer to realize highly efficient grinding on demand. Citation: Li, X.; Wang, Y.; Guan, Y.
    [Show full text]
  • Breaking Wafers Activity the Crystallography Learning Module Participant Guide
    Breaking Wafers Activity The Crystallography Learning Module Participant Guide Description and Estimated Time to Complete The purpose of this learning module is to introduce the science of crystallography and its importance to microtechnology. Activities provide additional exploration into crystallography and its applications. In this activity you will further explore the crystal planes of silicon by breaking two silicon wafers. By the end of this activity, you should be able to tell from a piece of silicon the specific crystal orientation of the silicon crystal. Estimated Time to Complete Allow at least 15 minutes to complete this activity. Introduction MEMS (microelectromechanical systems) are fabricated using monocrystalline silicon wafers. The wafers are cut from a silicon ingot that is formed by melting chunks of polycrystalline solids in a large crucible. Once melted a “seed crystal” is placed in the liquid silicon to stimulate crystal growth for a specific crystal orientation. Over several hours a long ingot of pure monocrystalline silicon is slowly pulled from the melt. Below are the steps for “growing” this monocrystalline ingot. 1. First we start with very pure polycrystalline silicon material (99.999999999% pure!) 2. The pure silicon is melted in a crucible at 1425°C. (This molten silicon is called “the melt”.) 3. A seed crystal is precisely oriented and mounted on a rod then lowered into the melt (left image). Silicon atoms in the melt align to the same crystal orientation of the seed. 4. As the seed crystal is slowly pulled out of the melt, the seed and the crucible are rotated in opposite directions A large crystal ingot or boule is formed by controlling the temperature gradient of the melt, the speed of rotation, and the rate of the pull of the rod.
    [Show full text]
  • On-Wafer Characterization of Silicon Transistors up to 500 Ghz and Analysis of Measurement Discontinuities Between the Frequency
    On-Wafer Characterization of Silicon Transistors Up To 500 GHz and Analysis of Measurement Discontinuities Between the Frequency Bands Sebastien Fregonese, Magali de Matos, Marina Deng, Manuel Potéreau, Cédric Ayela, Klaus Aufinger, Thomas Zimmer To cite this version: Sebastien Fregonese, Magali de Matos, Marina Deng, Manuel Potéreau, Cédric Ayela, et al.. On-Wafer Characterization of Silicon Transistors Up To 500 GHz and Analysis of Measurement Discontinuities Between the Frequency Bands. IEEE Transactions on Microwave Theory and Techniques, Institute of Electrical and Electronics Engineers, 2018, 66 (7), pp.3332-3341. 10.1109/TMTT.2018.2832067. hal-01818021 HAL Id: hal-01818021 https://hal.archives-ouvertes.fr/hal-01818021 Submitted on 27 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 On-wafer Characterization of Silicon Transistors up to 500 GHz And Analysis of Measurement Discontinuities between the Frequency Bands Sebastien Fregonese, Magali De Matos, Marina Deng, Manuel Potereau, Cedric Ayela, Klaus Aufinger and Thomas Zimmer as of the maximum available gain MAG. Calibration has been carried out with impedance standard substrate (ISS) and the Abstract— This paper investigates on-wafer characterization calibration methods used were LRRM (line-reflect-reflect- of SiGe HBTs up to 500 GHz.
    [Show full text]
  • Crystalline Silicon Photovoltaic Module Manufacturing
    Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory Suggested Citation Woodhouse, Michael. Brittany Smith, Ashwin Ramdas, and Robert Margolis. 2019. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy19osti/72134.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
    [Show full text]
  • Summarizing CPU and GPU Design Trends with Product Data
    Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts.
    [Show full text]