The Physics of Music and Musical Instruments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The KNIGHT REVISION of HORNBOSTEL-SACHS: a New Look at Musical Instrument Classification
The KNIGHT REVISION of HORNBOSTEL-SACHS: a new look at musical instrument classification by Roderic C. Knight, Professor of Ethnomusicology Oberlin College Conservatory of Music, © 2015, Rev. 2017 Introduction The year 2015 marks the beginning of the second century for Hornbostel-Sachs, the venerable classification system for musical instruments, created by Erich M. von Hornbostel and Curt Sachs as Systematik der Musikinstrumente in 1914. In addition to pursuing their own interest in the subject, the authors were answering a need for museum scientists and musicologists to accurately identify musical instruments that were being brought to museums from around the globe. As a guiding principle for their classification, they focused on the mechanism by which an instrument sets the air in motion. The idea was not new. The Indian sage Bharata, working nearly 2000 years earlier, in compiling the knowledge of his era on dance, drama and music in the treatise Natyashastra, (ca. 200 C.E.) grouped musical instruments into four great classes, or vadya, based on this very idea: sushira, instruments you blow into; tata, instruments with strings to set the air in motion; avanaddha, instruments with membranes (i.e. drums), and ghana, instruments, usually of metal, that you strike. (This itemization and Bharata’s further discussion of the instruments is in Chapter 28 of the Natyashastra, first translated into English in 1961 by Manomohan Ghosh (Calcutta: The Asiatic Society, v.2). The immediate predecessor of the Systematik was a catalog for a newly-acquired collection at the Royal Conservatory of Music in Brussels. The collection included a large number of instruments from India, and the curator, Victor-Charles Mahillon, familiar with the Indian four-part system, decided to apply it in preparing his catalog, published in 1880 (this is best documented by Nazir Jairazbhoy in Selected Reports in Ethnomusicology – see 1990 in the timeline below). -
Lab 12. Vibrating Strings
Lab 12. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Which as you may have learned by now means that you have built up explanations in your subconscious about how they work, and that those explanations are sometimes self-contradictory, and rarely entirely correct. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the pitch, which in physics terms means changing the resonant frequency of vibration. Similarly, changing the thickness (and thus the mass) of the string also affects its sound (frequency). String length must also have some effect, since a bass violin is much bigger than a normal violin and sounds much different. The interplay between these factors is explored in this laboratory experi- ment. You do not need to know physics to understand how instruments work. In fact, in the course of this lab alone you will engage with material which entire PhDs in music theory have been written. -
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
Following the Science
November 2020 Following the Science: A systematic literature review of studies surrounding singing and brass, woodwind and bagpipe playing during the COVID-19 pandemic Authors: John Wallace, Lio Moscardini, Andrew Rae and Alan Watson Music Education MEPGScotland Partnership Group MEPGScotland.org @MusicEducation10 Table of Contents Overview 1 Introduction Research Questions Research Method 2 Systematic Review Consistency Checklist Results 5 Thematic Categories Discussion 7 Breathing Singing Brass playing Woodwind playing Bagpipes Summary Conclusions 14 Recommended measures to mitigate risk 15 Research Team 17 Appendix 18 Matrix of identified papers References 39 Overview Introduction The current COVID-19 situation has resulted in widespread concern and considerable uncertainty relating to the position of musical performance and in particular potential risks associated with singing and brass, woodwind and bagpipe playing. There is a wide range of advice and guidance available but it is important that any guidance given should be evidence- based and the sources of this evidence should be known. The aim of the study was to carry out a systematic literature review in order to gather historical as well as the most current and relevant information which could provide evidence-based guidance for performance practice. This literature was analysed in order to determine the evidence of risk attached to singing and brass , woodwind and bagpipe playing, in relation to the spread of airborne pathogens such as COVID-19, through droplets and aerosol. -
A Framework for the Static and Dynamic Analysis of Interaction Graphs
A Framework for the Static and Dynamic Analysis of Interaction Graphs DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sitaram Asur, B.E., M.Sc. * * * * * The Ohio State University 2009 Dissertation Committee: Approved by Prof. Srinivasan Parthasarathy, Adviser Prof. Gagan Agrawal Adviser Prof. P. Sadayappan Graduate Program in Computer Science and Engineering c Copyright by Sitaram Asur 2009 ABSTRACT Data originating from many different real-world domains can be represented mean- ingfully as interaction networks. Examples abound, ranging from gene expression networks to social networks, and from the World Wide Web to protein-protein inter- action networks. The study of these complex networks can result in the discovery of meaningful patterns and can potentially afford insight into the structure, properties and behavior of these networks. Hence, there is a need to design suitable algorithms to extract or infer meaningful information from these networks. However, the challenges involved are daunting. First, most of these real-world networks have specific topological constraints that make the task of extracting useful patterns using traditional data mining techniques difficult. Additionally, these networks can be noisy (containing unreliable interac- tions), which makes the process of knowledge discovery difficult. Second, these net- works are usually dynamic in nature. Identifying the portions of the network that are changing, characterizing and modeling the evolution, and inferring or predict- ing future trends are critical challenges that need to be addressed in the context of understanding the evolutionary behavior of such networks. To address these challenges, we propose a framework of algorithms designed to detect, analyze and reason about the structure, behavior and evolution of real-world interaction networks. -
Playing Harmonica with Guitar & Ukulele
Playing Harmonica with Guitar & Ukulele IT’S EASY WITH THE LEE OSKAR HARMONICA SYSTEM... SpiceSpice upup youryour songssongs withwith thethe soulfulsoulful soundsound ofof thethe harmonicaharmonica alongalong withwith youryour GuitarGuitar oror UkuleleUkulele playing!playing! Information all in one place! Online Video Guides Scan or visit: leeoskarquickguide.com ©2013-2016 Lee Oskar Productions Inc. - All Rights Reserved Major Diatonic Key labeled in 1st Position (Straight Harp) Available in 14 keys: Low F, G, Ab, A, Bb, B, C, Db, D, Eb, E, F, F#, High G Key of C MAJOR DIATONIC BLOW DRAW The Major Diatonic harmonica uses a standard Blues tuning and can be played in the 1st Position (Folk & Country) or the 2 nd Position (Blues, Rock/Pop Country). 1 st Position: Folk & Country Most Folk and Country music is played on the harmonica in the key of the blow (exhale) chord. This is called 1 st Position, or straight harp, playing. Begin by strumming your guitar / ukulele: C F G7 C F G7 With your C Major Diatonic harmonica Key of C MIDRANGE in its holder, starting from blow (exhale), BLOW try to pick out a melody in the midrange of the harmonica. DRAW Do Re Mi Fa So La Ti Do C Major scale played in 1st Position C D E F G A B C on a C Major Diatonic harmonica. 4 4 5 5 6 6 7 7 ©2013-2016 Lee Oskar Productions Inc. All Rights Reserved 2nd Position: Blues, Rock/Pop, Country Most Blues, Rock, and modern Country music is played on the harmonica in the key of the draw (inhale) chord. -
White Paper: Acoustics Primer for Music Spaces
WHITE PAPER: ACOUSTICS PRIMER FOR MUSIC SPACES ACOUSTICS PRIMER Music is learned by listening. To be effective, rehearsal rooms, practice rooms and performance areas must provide an environment designed to support musical sound. It’s no surprise then that the most common questions we hear and the most frustrating problems we see have to do with acoustics. That’s why we’ve put this Acoustics Primer together. In simple terms we explain the fundamental acoustical concepts that affect music areas. Our hope is that music educators, musicians, school administrators and even architects and planners can use this information to better understand what they are, and are not, hearing in their music spaces. And, by better understanding the many variables that impact acoustical environ- ments, we believe we can help you with accurate diagnosis and ultimately, better solutions. For our purposes here, it is not our intention to provide an exhaustive, technical resource on the physics of sound and acoustical construction methods — that has already been done and many of the best works are listed in our bibliography and recommended readings on page 10. Rather, we want to help you establish a base-line knowledge of acoustical concepts that affect music education and performance spaces. This publication contains information reviewed by Professor M. David Egan. Egan is a consultant in acoustics and Professor Emeritus at the College of Architecture, Clemson University. He has been principal consultant of Egan Acoustics in Anderson, South Carolina for more than 35 years. A graduate of Lafayette College (B.S.) and MIT (M.S.), Professor Eagan also has taught at Tulane University, Georgia Institute of Technology, University of North Carolina at Charlotte, and Washington University. -
Significance of Beating Observed in Earthquake Responses of Buildings
SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE RESPONSES OF BUILDINGS Mehmet Çelebi1, S. Farid Ghahari2, and Ertuğrul Taciroǧlu2 U.S. Geological Survey1 and University of California, Los Angeles2 Menlo Park, California, USA1 and Los Angeles, California, USA2 Abstract The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking. Introduction In a cursory survey of several textbooks on structural dynamics, it can be seen that beating effects have not been included in their scopes. On the other hand, as more earthquake response records from instrumented buildings became available, it also became evident that the beating phenomenon is common. As modern digital equipment routinely provide recordings of prolonged responses of structures, we were prompted to visit the subject of beating, since such response characteristics may impact the instantaneous and long-term shaking performances of buildings during large or small earthquakes. The main purpose in deploying seismic instruments in buildings (and other structures) is to record their responses during seismic events to facilitate studies understanding and assessing their behavior and performances during and future strong shaking events. -
Acoustics & Ultrasonics
Dr.R.Vasuki Associate professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015 Science of sound that deals with origin, propagation and auditory sensation of sound. Sound production Propagation by human beings/machines Reception Classification of Sound waves Infrasonic audible ultrasonic Inaudible Inaudible < 20 Hz 20 Hz to 20,000 Hz ˃20,000 Hz Music – The sound which produces rhythmic sensation on the ears Noise-The sound which produces jarring & unpleasant effect To differentiate sound & noise Regularity of vibration Degree of damping Ability of ear to recognize the components Sound is a form of energy Sound is produced by the vibration of the body Sound requires a material medium for its propagation. When sound is conveyed from one medium to another medium there is no bodily motion of the medium Sound can be transmitted through solids, liquids and gases. Velocity of sound is higher in solids and lower in gases. Sound travels with velocity less than the velocity 8 of light. c= 3x 10 V0 =330 m/s at 0° degree Lightning comes first than thunder VT= V0+0.6 T Sound may be reflected, refracted or scattered. It undergoes diffraction and interference. Pitch or frequency Quality or timbre Intensity or Loudness Pitch is defined as the no of vibrations/sec. Frequency is a physical quantity but pitch is a physiological quantity. Mosquito- high pitch Lion- low pitch Quality or timbre is the one which helps to distinguish between the musical notes emitted by the different instruments or voices even though they have the same pitch. Intensity or loudness It is the average rate of flow of acoustic energy (Q) per unit area(A) situated normally to the direction of propagation of sound waves. -
Psychoacoustics Perception of Normal and Impaired Hearing with Audiology Applications Editor-In-Chief for Audiology Brad A
PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Editor-in-Chief for Audiology Brad A. Stach, PhD PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Jennifer J. Lentz, PhD 5521 Ruffin Road San Diego, CA 92123 e-mail: [email protected] Website: http://www.pluralpublishing.com Copyright © 2020 by Plural Publishing, Inc. Typeset in 11/13 Adobe Garamond by Flanagan’s Publishing Services, Inc. Printed in the United States of America by McNaughton & Gunn, Inc. All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher. For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: [email protected] Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity. Library of Congress Cataloging-in-Publication Data Names: Lentz, Jennifer J., author. Title: Psychoacoustics : perception of normal and impaired hearing with audiology applications / Jennifer J. Lentz. Description: San Diego, CA : Plural Publishing, -
Investigation of the Time Dependent Nature of Infrasound Measured Near a Wind Farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1
Investigation of the time dependent nature of infrasound measured near a wind farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1 1 University of Adelaide, Australia ABSTRACT It is well-known that wind farm noise is dominated by low-frequency energy at large distances from the wind farm, where the high frequency noise has been more attenuated than low-frequency noise. It has also been found that wind farm noise is highly variable with time due to the influence of atmospheric factors such as atmospheric turbulence, wake turbulence from upstream turbines and wind shear, as well as effects that can be attributed to blade rotation. Nevertheless, many standards that are used to determine wind farm compliance are based on overall A-weighted levels which have been averaged over a period of time. Therefore the aim of the work described in this paper is to investigate the time dependent nature of unweighted wind farm noise and its perceptibility, with a focus on infrasound. Measurements were carried out during shutdown and operational conditions and results show that wind farm infrasound could be detectable by the human ear although not perceived as sound. Keywords: wind farm noise, on and off wind farm, infrasound, OHC threshold, crest factor I-INCE Classification of Subjects Number(s): 14.5.4 1. INTRODUCTION Wind turbine noise is influenced by atmospheric effects, which cause significant variations in the sound pressure level magnitude over time. In particular, factors causing amplitude variations include wind shear (1), directivity (2) and variations in the wind speed and direction. Wind shear, wind speed variations and yaw error (deviation of the turbine blade angle from optimum with respect to wind direction) cause changes in the blade loading and in the worst case, can lead to dynamic stall (3). -
Fretted Instruments, Frets Are Metal Strips Inserted Into the Fingerboard
Fret A fret is a raised element on the neck of a stringed instrument. Frets usually extend across the full width of the neck. On most modern western fretted instruments, frets are metal strips inserted into the fingerboard. On some historical instruments and non-European instruments, frets are made of pieces of string tied around the neck. Frets divide the neck into fixed segments at intervals related to a musical framework. On instruments such as guitars, each fret represents one semitone in the standard western system, in which one octave is divided into twelve semitones. Fret is often used as a verb, meaning simply "to press down the string behind a fret". Fretting often refers to the frets and/or their system of placement. The neck of a guitar showing the nut (in the background, coloured white) Contents and first four metal frets Explanation Variations Semi-fretted instruments Fret intonation Fret wear Fret buzz Fret Repair See also References External links Explanation Pressing the string against the fret reduces the vibrating length of the string to that between the bridge and the next fret between the fretting finger and the bridge. This is damped if the string were stopped with the soft fingertip on a fretless fingerboard. Frets make it much easier for a player to achieve an acceptable standard of intonation, since the frets determine the positions for the correct notes. Furthermore, a fretted fingerboard makes it easier to play chords accurately. A disadvantage of frets is that they restrict pitches to the temperament defined by the fret positions.