Field Theory Dynamics from Branes in String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Field Theory Dynamics from Branes in String Theory Field Theory Dynamics from Branes in String Theory D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m Dr rer nat im Fach Physik eingereicht an der MathematischNaturwissenschaftlichen Fakultat I der HumboldtUniversitat zu Berlin von Andreas Karch MA geb oren am in Bamberg Prasident der HumboldtUniversitat zu Berlin Prof Dr Dr hc H Meyer Dekan der MathematischNaturwissenschaftlichen Fakultat I Prof Dr JP Rab e Gutachter Tag der m undlichen Pr ufung Contents Motivation Dbranes and nonp erturbative eects in string theory The breakdown of p erturbation theory A string theoretic description of Dbranes Dbranes and gauge theory Gauge theory on the worldvolume Compactications and Dbranes Engineering Gauge theories Geometric Engineering Branes as Prob es HananyWitten setups Dbranes and dualities String Dualities and Mtheory Matrix Theory Worldvolume theory of the NS brane Exploiting the SYM Dbrane corresp ondence Classical HananyWitten setups Branegineering Theres so much more one can do Solving the quantum theory Bending and quantum eects Lifting to Mtheory Applications of the brane construction Dualities in the brane picture Exact Sduality Seib erg duality and Mirror symmetry Sdual N pairs revisited Nontrivial RG xed p oints i App earance and applications Physics at nontrivial FP from branes d HananyWitten setups Extracting information ab out the FP theory Global Symmetries Deformations and Phase Transitions Correlators from branes A chiral nonchiral transition The equivalence of the various approaches The duality b etween orbifold and NS brane Hanany Witten versus branes at orbifolds The orbifold construction The classical branches Including D branes and orientifolds Applying Tduality Adiabatically expanding to d N Branes and geometry obtaining the Seib ergWitten curve The approaches A Tduality for b ent branes and branes ending on branes Unifying the dierent approaches Op en problems and directions for further research Brane Boxes Maldacena Conjecture Summary Bibliography Zusammenfassung Danksagung Selbstandigkeitserklarung Leb enslauf Publikationsliste ii Motivation and Introduction Motivation It is the main goal of physics to explain all ratios b etween measurable quantities The hop e is that in the end a very simple b eautiful and unique mathematical structure emerges the theory of everything Mo dern physics is based on two ma jor building blo cks general relativity and quantum physics The former expresses all phenomena of the macroscopic world and esp ecially gravity in terms of simple geometric concepts The latter is p owerful in explaining the microscopic world by replacing the notion of particles which o ccupy a certain p osition in space and carry a certain amount of momentum by the more abstract formalism of states in a Hilb ert space and observables as op erators acting on them Since the distinction b etween microscopic and macroscopic world seems to b e rather arbitrary these two building blo cks should b e unied in an underlying theory More than that as they stand the two concepts are even inconsistent Straight forward quantization of general relativity leads to innities in physical pro cesses that can not b e tolerated A larger theory unifying gravity and quantum theory is hence not only desired from an aestethic p oint of view but indeed required for consistency After many years of extensive search for this unifying theory a single candidate has emerged string theory String theory replaces the fundamental p oint like ob jects of particle physics by d strings thereby removing the innities encountered in quantizing general relativity General relativity reemerges as a low energy limit at large distances where it was tested exp erimentally However at small distances stringy physics takes over and even our concepts of space and time break down Similarly ordinary particle physics as describ ed by the standard mo del can reemerge in the limit where gravitational interactions b etween the particles can b e neglected The energy scale at which b oth gravity and quantum eects b ecome imp ortant is set by the Planck scale and is roughly GeV Since this scale is so huge it is imp ossible to just create the fundamental degrees of quantum gravity in an accelerator and then lo ok what they are Even though string theory has all the ingredients required by mo dern physics it is dicult to make contact with physics as we know it The ma jor obstacle is that string theory allows for a variety of dierent vacua each of which leads to dierent physics No precise predictions ab out the lowenergy physics like answers to the why questions left by the standard mo del can b e made without nding a pro cess that determines the right vacuum However the most imp ortant concepts app earing in string theory namely gauge theory gravity and sup ersymmetry are indeed known or b elieved to dominate the real world While the former two are the bases for all physics describ ed by the standard mo del and general relativity the latter is b elieved to b e of similar imp ortance for next generation collider physics Exp erimental verication of sup ersymmetry in the real world would b e even more supp ort that string theory is not just the only known consistent quantum theory of gravity but indeed the fundamental theory realized in our world Of sp ecial interest are also ob jects which prob e the regime of quantum gravity that is they are small enough for quantum eects to b e imp ortant and heavy enough to require gravity Examples of such ob jects are black holes close to their singularity or our universe in very early times close to big bang Treatment of these imp ortant issues as well as the vacuum selection problem requires nonp erturbative information ab out string theory So far the p erturbative expansion of string theory in terms of worldsurfaces was the only denition we had of string theory Only very recently to ols have emerged that allow us control certain asp ects of the nonp erturbative physics b ehind string theory raising the hop e that these fundamental issues can nally b e addressed Introduction During the so called second string revolution it has b ecome p ossible to gain control over asp ects of string theory that were not contained in its p erturbation expansion in terms of worldsurfaces The ma jor achievements were the discovery of Dbranes as one of the nonp erturbative ob jects in string theory and the realization of the role of duality symmetries in string theory relating two seemingly dierent theoretical descriptions to one and the same physical situation Dualities have b een of similar imp ortance in gauge theories Using dualities it has b een p ossible to solve the IR b ehaviour of certain quantum eld theories exactly and get a lot of nonp erturbative information even in situations with less restrictive symmetries However in all those setups sup ersymmetry is a vital ingredient and it is not clear yet how these metho ds can b e generalized to nonsup ersymmetric situations Nonp erturbative string theory and Sup er Yang Mills SYM gauge theories are indeed deeply related The dynamics of the Dbranes which are so imp ortant for our understand ing of nonp erturbative stringtheory is basically governed by SYM This connection can b e used in a twofold way dualities and other obscure asp ects of eld theory only dis covered recently like nontrivial xed p oints of the renormalization group with mutual nonlo cal ob jects b ecoming massless nd their natural place in string theory where they can b e easily visualized On the other hand some problems which seem intractable in string theory can b e mapp ed to questions in gauge theory which are under much b etter control Indeed it has b een prop osed that all nonp erturbative asp ects of string theory can b e enco ded in large N SYM theory It is the purp ose of this work to highlight some of the insights gained with the help of this deep connection b etween gauge theory and string theory In Chapter I will review the construction of Dbranes and explain how gauge theory determines their dynamics I will also comment on the imp ortant role Dbranes played in understanding string theory dualities since these dualities lead to the discovery of an dimensional theory called Mtheory that basically summarizes all the nonp erturbative insights we gained ab out string theory and is
Recommended publications
  • Curvature Tensors in a 4D Riemann–Cartan Space: Irreducible Decompositions and Superenergy
    Curvature tensors in a 4D Riemann–Cartan space: Irreducible decompositions and superenergy Jens Boos and Friedrich W. Hehl [email protected] [email protected]"oeln.de University of Alberta University of Cologne & University of Missouri (uesday, %ugust 29, 17:0. Geometric Foundations of /ravity in (artu Institute of 0hysics, University of (artu) Estonia Geometric Foundations of /ravity Geometric Foundations of /auge Theory Geometric Foundations of /auge Theory ↔ Gravity The ingredients o$ gauge theory: the e2ample o$ electrodynamics ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: redundancy conserved e2ternal current 5 ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current Complete, gauge-theoretical description: 9 local #7,) invariance ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: iers Complex spinor 6eld: rce carr ry of fo mic theo rrent rosco rnal cu m pic en exte att desc gredundancyiv er; N ript oet ion o conserved e2ternal current 5 invariance her f curr conserved #7,8 current e n t s Complete, gauge-theoretical description: gauge theory = complete description of matter and 9 local #7,) invariance how it interacts via gauge bosons ,3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincar; gauge theory *3,.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • Arxiv:1108.0677V2 [Hep-Th]
    DAMTP-2011-59 MIFPA-11-34 THE SHEAR VISCOSITY TO ENTROPY RATIO: A STATUS REPORT Sera Cremonini ♣,♠ ∗ ♣ Centre for Theoretical Cosmology, DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK ♠ George and Cynthia Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University, College Station, TX 77843–4242, USA (Dated: October 22, 2018) This review highlights some of the lessons that the holographic gauge/gravity duality has taught us regarding the behavior of the shear viscosity to entropy density in strongly coupled field theories. The viscosity to entropy ratio has been shown to take on a very simple universal value in all gauge theories with an Einstein gravity dual. Here we describe the origin of this universal ratio, and focus on how it is modified by generic higher derivative corrections corresponding to curvature corrections on the gravity side of the duality. In particular, certain curvature corrections are known to push the viscosity to entropy ratio below its universal value. This disproves a longstanding conjecture that such a universal value represents a strict lower bound for any fluid in nature. We discuss the main developments that have led to insight into the violation of this bound, and consider whether the consistency of the theory is responsible for setting a fundamental lower bound on the viscosity to entropy ratio. arXiv:1108.0677v2 [hep-th] 23 Aug 2011 ∗ Electronic address: [email protected] 2 Contents I. Introduction 3 A. The quark gluon plasma and the shear viscosity to entropy ratio 4 II. The universality of η/s 6 A.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • Classical Field Theories from Hamiltonian Constraint: Local
    Classical field theories from Hamiltonian constraint: Local symmetries and static gauge fields V´aclav Zatloukal∗ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Bˇrehov´a7, 115 19 Praha 1, Czech Republic and Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany We consider the Hamiltonian constraint formulation of classical field theories, which treats space- time and the space of fields symmetrically, and utilizes the concept of momentum multivector. The gauge field is introduced to compensate for non-invariance of the Hamiltonian under local trans- formations. It is a position-dependent linear mapping, which couples to the Hamiltonian by acting on the momentum multivector. We investigate symmetries of the ensuing gauged Hamiltonian, and propose a generic form of the gauge field strength. In examples we show how a generic gauge field can be specialized in order to realize gravitational and/or Yang-Mills interaction. Gauge field dynamics is not discussed in this article. Throughout, we employ the mathematical language of geometric algebra and calculus. I. INTRODUCTION The Hamiltonian constraint is a concept useful for Hamiltonian formulation not only of general relativity [1], but, in fact, of a generic field theory, as pointed out in Ref. [2, Ch. 3], and exploited further in [3] and [4]. Characteristic features of this formulation are: finite-dimensional configu- ration space, and multivector-valued momentum variable. In this respect it is congruent with the covariant (or De Donder-Weyl) Hamiltonian formalism [5{13] and should be contrasted with the canonical (or instantaneous) Hamiltonian formalism [14], which utilizes an infinite-dimensional space of field configurations defined at a given instant of time.
    [Show full text]
  • Applications Gauge Theory/Gravity
    APPLICATIONS OF THE GAUGE THEORY/GRAVITY CORRESPONDENCE Andrea Helen Prinsloo A thesis submitted for the degree of Doctor of Philosophy in Applied Mathematics, Department of Mathematics and Applied Mathematics, University of Cape Town. May, 2010 i Abstract The gauge theory/gravity correspondence encompasses a variety of different specific dualities. We study examples of both Super Yang-Mills/type IIB string theory and Super Chern-Simons-matter/type IIA string theory dualities. We focus on the recent ABJM correspondence as an example of the latter. We conduct a detailed investigation into the properties of D-branes and their operator 3 duals. The D2-brane dual giant graviton on AdS4×CP is initially studied: we calculate its spectrum of small fluctuations and consider open string excitations in both the short pp-wave and long semiclassical string limits. We extend Mikhailov's holomorphic curve construction to build a giant graviton on 1;1 AdS5 × T . This is a non-spherical D3-brane configuration, which factorizes at maxi- mal size into two dibaryons on the base manifold T1;1. We present a fluctuation analysis and also consider attaching open strings to the giant's worldvolume. We finally propose 3 an ansatz for the D4-brane giant graviton on AdS4 × CP , which is embedded in the complex projective space. 2 The maximal D4-brane giant factorizes into two CP dibaryons. A comparison is made 2 between the spectrum of small fluctuations about one such CP dibaryon and the conformal dimensions of BPS excitations of the dual determinant operator in ABJM theory. We conclude with a study of the thermal properties of an ensemble of pp-wave strings under a Lunin-Maldacena deformation.
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]
  • What Lattice Theorists Can Do for Superstring/M-Theory
    July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles.
    [Show full text]
  • Refined Topological Branes Arxiv:1805.00993V1 [Hep-Th] 2 May 2018
    ITEP-TH-08/18 IITP-TH-06/18 Refined Topological Branes Can Koz¸caza;b;c;1 Shamil Shakirovd;e;f;2 Cumrun Vafac and Wenbin Yang;b;c;3 aDepartment of Physics, Bo˘gazi¸ciUniversity 34342 Bebek, Istanbul, Turkey bCenter of Mathematical Sciences and Applications, Harvard University 20 Garden Street, Cambridge, MA 02138, USA cJefferson Physical Laboratory, Harvard University 17 Oxford Street, Cambridge, MA 02138, USA dSociety of Fellows, Harvard University Cambridge, MA 02138, USA eInstitute for Information Transmission Problems, Moscow 127994, Russia f Mathematical Sciences Research Institute, Berkeley, CA 94720, USA gYau Mathematical Sciences Center, Tsinghua University, Haidian district, Beijing, China, 100084 Abstract: We study the open refined topological string amplitudes using the refined topological vertex. We determine the refinement of holonomies necessary to describe the boundary conditions of open amplitudes (which in particular satisfy the required integrality properties). We also derive the refined holonomies using the refined Chern- Simons theory. arXiv:1805.00993v1 [hep-th] 2 May 2018 1Current affiliation Bo˘gazi¸ciUniversity 2Current affiliation Mathematical Sciences Research Institute 3Current affiliation Yau Mathematical Sciences Center Contents 1 Introduction1 2 Topological Branes3 2.1 External topological branes5 2.2 Internal topological branes7 2.2.1 Topological t-branes8 2.2.2 Topological q-branes 10 3 Topological Branes from refined Chern-Simons Theory 11 3.1 Topological t-branes from refined Chern-Simons theory 13 3.2 Topological q-branes from refined Chern-Simons theory 15 3.3 Duality relation and brane changing operator 15 4 Application: Double compactified toric Calabi-Yau 3-fold 17 4.1 Generic case 19 4.2 Case Qτ = 0 20 4.3 Case Qρ = 0 21 5 Discussion and Outlook 22 A Appenix A: Useful Identities 23 1 Introduction Gauge theories with N = 2 supersymmetry in 4d have been important playground for theoretical physics since the celebrated solution of Seiberg and Witten [1,2].
    [Show full text]
  • Black Holes and String Theory
    Black Holes and String Theory Hussain Ali Termezy Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London September 2012 Contents 1 Black Holes in General Relativity 2 1.1 Black Hole Solutions . 2 1.2 Black Hole Thermodynamics . 5 2 String Theory Background 19 2.1 Strings . 19 2.2 Supergravity . 23 3 Type IIB and Dp-brane solutions 25 4 Black Holes in String Theory 33 4.1 Entropy Counting . 33 Introduction The study of black holes has been an intense area of research for many decades now, as they are a very useful theoretical construct where theories of quantum gravity become relevant. There are many curiosities associated with black holes, and the resolution of some of the more pertinent problems seem to require a quantum theory of gravity to resolve. With the advent of string theory, which purports to be a unified quantum theory of gravity, attention has naturally turned to these questions, and have remarkably shown signs of progress. In this project we will first review black hole solutions in GR, and then look at how a thermodynamic description of black holes is made possible. We then turn to introduce string theory and in particular review the black Dp-brane solutions of type IIB supergravity. Lastly we see how to compute a microscopic account of the Bekenstein entropy is given in string theory. 1 Chapter 1 Black Holes in General Relativity 1.1 Black Hole Solutions We begin by reviewing some the basics of black holes as they arise in the study of general relativity.
    [Show full text]
  • Supersymmetric Partition Functions and a String Theory in 4 Dimensions Arxiv:1209.2425V1 [Hep-Th] 11 Sep 2012
    Supersymmetric Partition Functions and a String Theory in 4 Dimensions Cumrun Vafa Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA Abstract We propose a novel string theory propagating in a non-commutative deformation of the four dimensional space T ∗T2 whose scattering states correspond to superconformal theories in 5 dimensions and the scattering amplitudes compute superconformal indices of the corresponding 5d theories. The superconformal theories are obtained by M- theory compactifications on singular CY 3-folds or equivalently from a web of 5-branes of type IIB strings. The cubic interaction of this string theory for primitive winding modes corresponds to the (refined) topological vertex. The oscillator modes of the string theory correspond to off-shell states and carry information about co-dimension arXiv:1209.2425v1 [hep-th] 11 Sep 2012 2 defects of the superconformal theory. Particular limits of a subset of scattering amplitudes of this string theory lead to the partition functions of An Gaiotto theories for all n, compactified on S4, i.e., to amplitudes of all Toda theories. 1 Introduction Protected amplitudes of supersymmetric theories are frequently captured by topological theories. These are typically holomorphic quantities. In the context of supersymmetric theories arising in string theory these are computed by topological string amplitudes. With the work of Pestun [1] on partition function of supersymmetric theories on S4, it became clear that not only holomorphic amplitudes of supersymmetric theories can arise in partition functions but also combinations of topological/anti-topological amplitudes arise{very much along the lines of tt∗ geometry studied in the 2d context [2].
    [Show full text]