The Quantum Structure of Space and Time

Total Page:16

File Type:pdf, Size:1020Kb

The Quantum Structure of Space and Time QcEntwn Structure &pace and Time This page intentionally left blank Proceedings of the 23rd Solvay Conference on Physics Brussels, Belgium 1 - 3 December 2005 The Quantum Structure of Space and Time EDITORS DAVID GROSS Kavli Institute. University of California. Santa Barbara. USA MARC HENNEAUX Universite Libre de Bruxelles & International Solvay Institutes. Belgium ALEXANDER SEVRIN Vrije Universiteit Brussel & International Solvay Institutes. Belgium \b World Scientific NEW JERSEY LONOON * SINGAPORE BElJlNG * SHANGHAI HONG KONG TAIPEI * CHENNAI Published by World Scientific Publishing Co. Re. Ltd. 5 Toh Tuck Link, Singapore 596224 USA ofJice: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK ofice; 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-PublicationData A catalogue record for this hook is available from the British Library. THE QUANTUM STRUCTURE OF SPACE AND TIME Proceedings of the 23rd Solvay Conference on Physics Copyright 0 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereoi may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-256-952-9 ISBN 981-256-953-7 (phk) Printed in Singapore by World Scientific Printers (S) Pte Ltd The International Solvay Institutes Board of Directors Members Mr. Jacques Solvay President Prof. Franz Bingen Vice-president and Emeritus-Professor at the VUB Baron Daniel Janssen President of the Board of Directors of Solvay S.A. Prof. Franklin Lambert Deputy Director and Professor at the VUB Prof. Renk Lefever Professor at the ULB Prof. Grkgoire Nicolis Professor at the ULB Mr Jean-Marie Piret Attorney General of the Supreme Court of Appeal and Honorary Principal Private Secretary to the King Prof. Jean-Louis Vanherweghem President of the Administrative Board of the ULB Prof. Irina Veretennicoff Professor at the VUB Honorary Member Baron Andre Jaumotte Honorary Rector and Honorary President of the ULB Vi The Quantum Structure of Space and Time Guest Members Prof. Albert Goldbeter Professor at the ULB and Scientific Secretary of the Committee for Chemistry Mr Pascal De Wit Adviser Solvay S.A. Prof. Niceas Schamp Secretary of the Royal Flemish Academy for Science and the Arts Prof. Alexandre Sevrin Professor at the VUB and Scientific Secretary of the Committee for Physics Direct or Prof. Marc Henneaux Professor at the ULB The International Solvay Institutes vii Solvay Scientific Committee for Physics Professor Herbert Walther (chair) Max-Planck Institut (Munich, Germany) Professor Tito Arecchi Universith di Firenze and INOA (Firenze, Italy) Professor Jocelyn Bell Burnell University of Bath (Bath, UK) Professor Claude Cohen-Tannoudji Ecole Normale SupBrieure (Paris, fiance) Professor Ludwig Faddeev V.A Steklov Mathematical Institute (Saint-Petersburg, Russia) Professor David Gross Kavli Institute (Santa Barbara, USA) Professor Gerard 't Hooft Spinoza Instituut (Utrecht, The Netherlands) Professor Klaus von Klitzing Max-Planck-Institut (Stuttgart, Germany) Professor Pierre Ramond University of Florida (Gainesville, USA) Professor Alexandre Sevrin (Scientific Secretary) Vrije Universiteit Brussel (Belgium) This page intentionally left blank 23rd Solvay Conference on Physics Hotel MQtropole (Brussels), 1-3 December 2005 The Quantum Structure of Space and Time Chair: Professor David Gross The 23rd Solvay Conference on Physics took place in Brussels from December 1 through December 3, 2005 according to the tradition initiated by Lorentz at the 1st Solvay Conference on Physics in 1911 (“Premier Conseil de Physique Solvay”). It was followed on December 4 by a public event co-organized with the European Commission, during which R. Dijkgraaf and B. Greene delivered public lectures and a panel of scientists (T. Damour, R. Dijkgraaf, B. Greene, D. Gross, G. ’t Hooft, L. Randall, G. Veneziano) answered questions from the audience. The Solvay Conferences have always benefitted from the support and encourage- ment of the Royal Family. His Royal Highness Prince Philippe of Belgium attended the first session on December 1 and met some of the participants. The organization of the 23rd Solvay Conference has been made possible thanks to the generous support of the Solvay Family, the Solvay Company, the Belgian National Lottery, the “Universitb Libre de Bruxelles”, the “Vrije Universeit Brus- sel”, the “Communautk franCaise de Belgique”, the David and Alice Van Buuren Foundation and the H6tel Mbtropole. ix X The Quantum Structure of Space and Tame Participants Nima Arkani-Hamed Harvard Abhay Ashtekar Penn State Michael Atiyah Edinburgh Constantin Bachas Paris Tom Banks Rutgers Lars Brink Goteborg Robert Brout Brussels Claudio Bunster Valdivia Curtis Callan Princeton Thi bault Damour Bures-sur-Yvette Jan de Boer Amsterdam Bernard de Wit Utrecht Robbert Dijkgraaf Amsterdam Michael Douglas Rutgers Georgi Dvali New York Franqois Englert Brussels Ludwig Faddeev St-Petersburg Pierre Fayet Paris Willy Fischler Austin Peter Galison Harvard Murray Gell-Mann Santa Fe Gary Gibbons Cambridge (UK) Michael Green Cambridge (UK) Brian Greene Columbia David Gross Santa Barbara Alan Guth Cambridge (USA) Jeffrey Harvey Chicago Gary Horowitz Santa Barbara Bernard Julia Paris Shamit Kachru Stanford Renata Kallosh St anford Elias Kiritsis Palaiseau Igor Klebanov Princeton Andrei Linde St anford Dieter Lust Munich Juan Maldacena Princeton Nikita Nekrasov Bures-sur-Yvette Hermann Nicolai Potsdam Hirosi Ooguri Pasadena Joseph Polchinski Santa Barbara Alexander Polyakov Princeton Eliezer Rabinovici Jerusalem Pierre Ramond Gainesville Lisa Randall Harvard Valery Rubakov Moscow John S chwarz Pasadena Nathan Seiberg Princeton 23rd Solvay Conference on Physics xi Ashoke Sen Allahabad Stephen Shenker Stanford Eva Silverstein Stanford Paul Steinhardt Princeton Andrew Strominger Harvard Gerard ’t Hooft Utrecht Neil Turok Cambridge Gabriele Veneziano Paris Steven Weinberg Austin Frank Wilczek Cambridge(US A) Paul Windey Paris Shing-Tung Yau H arvar d xii The Quantum Structure of Space and Time Auditors Riccardo Argurio ULB Glenn Barnich ULB Ben Craps VUB Frank Ferr ar i ULB Jean-Marie Fr&e ULB Raymond Gast mans KUL Marc Henneaux ULB Thomas Hertog CERN Laurent Houart ULB Franklin Lambert VUB Christiane Schomblond ULB Alexander Sevrin VUB Philippe Spindel UMH Peter Tinyakov ULB Walter Troost KUL Jan Troost ENS Michel Tytgat ULB Antoine Van Proeyen KUL Opening Session Opening Address by Marc Henneaux Your Royal Highness, Mrs. and Mr. Solvay, Ladies and Gentlemen, Dear Colleagues, Dear Friends, About one hundred years ago, at the invitation of Ernest Solvay, the leading physicists of the time gathered in the hotel Mktropole for a 6-day mythical meeting. This meeting began a tradition of unique conferences that shaped modern science. A total of 22 conferences have taken place every three years except during war periods, covering most aspects at the frontiers of physics. This year’s meeting continues the tradition. It is a great honor for me and a moving moment to welcome all of you to the 23rd Solvay Conference in Physics, in the building where the first meeting took place. A distinctive feature of the Solvay Conferences is that they benefit from the support and encouragement of the Royal Family. The pictures of Einstein with the Queen Elisabeth of Belgium are in the mind of all physicists. It is with a respectful gratitude that we acknowledge the continuation of this tradition today, at the time of the celebration of the 175th anniversary of Belgium. At the start of the 23rd Solvay Conference, I would like to have a thought for Ernest Solvay, the Founder of the Institutes, and for the men who assisted him in this enterprise, Paul Hkger and Hendrik Lorentz. Born in 1838, Ernest Solvay exhibited a passion for physics and chemistry from a very young age. He developed a new process for industrial production of sodium carbonate (NazCOs - “soude” in French, not soda^" (in the plural) as I could see on some uncontrolled web side). This was at the origin of his wealth, which he used to create many charitable foundations. In particular, after the success of the 1911 Solvay Conference, he founded the International Institute of Physics. The mission of the Institute was “to promote research, the purpose of which is to enlarge and deepen our understanding of natural phenomena, without excluding problems ... Xlll xiv The Quantum Structure of Space and Time belonging to other areas of science provided that these are connected with physics”. Mr. Solvay, we are very fortunate that the same interest in fundamental science has been transmitted to the following generations. Paul HBger and Hkndrik Lorentz played also a central role in the foundation of the Institutes. H6ger was professor at the UniversitB Libre de Bruxelles and a close collaborator of Ernest Solvay. He wrote in 1912 the rules of the Institute of Physics with the Dutch theoretical physicist Hendrik Lorentz, 1902 Nobel Laureate. Lorentz was the first scientific chair of the Institute until his death in 1928. He “governed” (if I can say so) the Institute with an iron hand in a velvet glove. His exceptional
Recommended publications
  • Lecture Notes in Advanced Matrix Computations
    Lecture Notes in Advanced Matrix Computations Lectures by Dr. Michael Tsatsomeros Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 0 Technicalities 1 0.1 Importance . 1 0.2 Background . 1 0.3 Material . 1 0.4 Matrix Multiplication . 1 Lecture 1 The Cost of Matrix Algebra 2 1.1 Block Matrices . 2 1.2 Systems of Linear Equations . 3 1.3 Triangular Systems . 4 Lecture 2 LU Decomposition 5 2.1 Gaussian Elimination and LU Decomposition . 5 Lecture 3 Partial Pivoting 6 3.1 LU Decomposition continued . 6 3.2 Gaussian Elimination with (Partial) Pivoting . 7 Lecture 4 Complete Pivoting 8 4.1 LU Decomposition continued . 8 4.2 Positive Definite Systems . 9 Lecture 5 Cholesky Decomposition 10 5.1 Positive Definiteness and Cholesky Decomposition . 10 Lecture 6 Vector and Matrix Norms 11 6.1 Vector Norms . 11 6.2 Matrix Norms . 13 Lecture 7 Vector and Matrix Norms continued 13 7.1 Matrix Norms . 13 7.2 Condition Numbers . 15 Notes by Jakob Streipel. Last updated April 27, 2018. i TABLE OF CONTENTS ii Lecture 8 Condition Numbers 16 8.1 Solving Perturbed Systems . 16 Lecture 9 Estimating the Condition Number 18 9.1 More on Condition Numbers . 18 9.2 Ill-conditioning by Scaling . 19 9.3 Estimating the Condition Number . 20 Lecture 10 Perturbing Not Only the Vector 21 10.1 Perturbing the Coefficient Matrix . 21 10.2 Perturbing Everything . 22 Lecture 11 Error Analysis After The Fact 23 11.1 A Posteriori Error Analysis Using the Residue .
    [Show full text]
  • Wave Extraction in Numerical Relativity
    Doctoral Dissertation Wave Extraction in Numerical Relativity Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayrischen Julius-Maximilians-Universitat¨ Wurzburg¨ vorgelegt von Oliver Elbracht aus Warendorf Institut fur¨ Theoretische Physik und Astrophysik Fakultat¨ fur¨ Physik und Astronomie Julius-Maximilians-Universitat¨ Wurzburg¨ Wurzburg,¨ August 2009 Eingereicht am: 27. August 2009 bei der Fakultat¨ fur¨ Physik und Astronomie 1. Gutachter:Prof.Dr.Karl Mannheim 2. Gutachter:Prof.Dr.Thomas Trefzger 3. Gutachter:- der Dissertation. 1. Prufer¨ :Prof.Dr.Karl Mannheim 2. Prufer¨ :Prof.Dr.Thomas Trefzger 3. Prufer¨ :Prof.Dr.Thorsten Ohl im Promotionskolloquium. Tag des Promotionskolloquiums: 26. November 2009 Doktorurkunde ausgehandigt¨ am: Gewidmet meinen Eltern, Gertrud und Peter, f¨urall ihre Liebe und Unterst¨utzung. To my parents Gertrud and Peter, for all their love, encouragement and support. Wave Extraction in Numerical Relativity Abstract This work focuses on a fundamental problem in modern numerical rela- tivity: Extracting gravitational waves in a coordinate and gauge independent way to nourish a unique and physically meaningful expression. We adopt a new procedure to extract the physically relevant quantities from the numerically evolved space-time. We introduce a general canonical form for the Weyl scalars in terms of fundamental space-time invariants, and demonstrate how this ap- proach supersedes the explicit definition of a particular null tetrad. As a second objective, we further characterize a particular sub-class of tetrads in the Newman-Penrose formalism: the transverse frames. We establish a new connection between the two major frames for wave extraction: namely the Gram-Schmidt frame, and the quasi-Kinnersley frame. Finally, we study how the expressions for the Weyl scalars depend on the tetrad we choose, in a space-time containing distorted black holes.
    [Show full text]
  • A Slice of Ads 5 As the Large N Limit of Seiberg Duality
    IPPP/10/86 ; DCPT/10/172 CERN-PH-TH/2010-234 A slice of AdS5 as the large N limit of Seiberg duality Steven Abela,b,1 and Tony Gherghettac,2 aInstitute for Particle Physics Phenomenology Durham University, DH1 3LE, UK bTheory Division, CERN, CH-1211 Geneva 23, Switzerland cSchool of Physics, University of Melbourne Victoria 3010, Australia Abstract A slice of AdS5 is used to provide a 5D gravitational description of 4D strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory in the conformal window at large N is described by the 5D bulk, while its weakly coupled (magnetic) dual is confined to the IR brane. This framework can be used to construct an = 1 N MSSM on the IR brane, reminiscent of the original Randall-Sundrum model. In addition, we use our framework to study strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces. This leads to a unified scenario that connects the arXiv:1010.5655v2 [hep-th] 28 Oct 2010 extra-ordinary gauge mediation limit to the gaugino mediation limit in warped space. [email protected] [email protected] 1 Introduction Seiberg duality [1, 2] is a powerful tool for studying strong dynamics, enabling calcu- lable approaches to otherwise intractable questions, as for example in the discovery of metastable minima in the free magnetic phase of supersymmetric quantum chromodynam- ics (SQCD) [3] (ISS). Despite such successes, the phenomenological applications of Seiberg duality are somewhat limited, simply by the relatively small number of known examples. An arguably more flexible tool for thinking about strong coupling is the gauge/gravity correspondence, namely the existence of gravitational duals for strongly-coupled gauge theories [4–6].
    [Show full text]
  • Einstein's Mistakes
    Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous.
    [Show full text]
  • Curvature Tensors in a 4D Riemann–Cartan Space: Irreducible Decompositions and Superenergy
    Curvature tensors in a 4D Riemann–Cartan space: Irreducible decompositions and superenergy Jens Boos and Friedrich W. Hehl [email protected] [email protected]"oeln.de University of Alberta University of Cologne & University of Missouri (uesday, %ugust 29, 17:0. Geometric Foundations of /ravity in (artu Institute of 0hysics, University of (artu) Estonia Geometric Foundations of /ravity Geometric Foundations of /auge Theory Geometric Foundations of /auge Theory ↔ Gravity The ingredients o$ gauge theory: the e2ample o$ electrodynamics ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: redundancy conserved e2ternal current 5 ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current Complete, gauge-theoretical description: 9 local #7,) invariance ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: iers Complex spinor 6eld: rce carr ry of fo mic theo rrent rosco rnal cu m pic en exte att desc gredundancyiv er; N ript oet ion o conserved e2ternal current 5 invariance her f curr conserved #7,8 current e n t s Complete, gauge-theoretical description: gauge theory = complete description of matter and 9 local #7,) invariance how it interacts via gauge bosons ,3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincar; gauge theory *3,.
    [Show full text]
  • Chapter 7 Powers of Matrices
    Chapter 7 Powers of Matrices 7.1 Introduction In chapter 5 we had seen that many natural (repetitive) processes such as the rabbit examples can be described by a discrete linear system (1) ~un+1 = A~un, n = 0, 1, 2,..., and that the solution of such a system has the form n (2) ~un = A ~u0. n In addition, we had learned how to find an explicit expression for A and hence for ~un by using the constituent matrices of A. In this chapter, however, we will be primarily interested in “long range predictions”, i.e. we want to know the behaviour of ~un for n large (or as n → ∞). In view of (2), this is implied by an understanding of the limit matrix n A∞ = lim A , n→∞ provided that this limit exists. Thus we shall: 1) Establish a criterion to guarantee the existence of this limit (cf. Theorem 7.6); 2) Find a quick method to compute this limit when it exists (cf. Theorems 7.7 and 7.8). We then apply these methods to analyze two application problems: 1) The shipping of commodities (cf. section 7.7) 2) Rat mazes (cf. section 7.7) As we had seen in section 5.9, the latter give rise to Markov chains, which we shall study here in more detail (cf. section 7.7). 312 Chapter 7: Powers of Matrices 7.2 Powers of Numbers As was mentioned in the introduction, we want to study here the behaviour of the powers An of a matrix A as n → ∞. However, before considering the general case, it is useful to first investigate the situation for 1 × 1 matrices, i.e.
    [Show full text]
  • Arxiv:Hep-Th/0106048V4 18 Oct 2001 Contents ∗ Theory Field Noncommutative Lcrncades [email protected] Address: Electronic I.SLTN N INSTANTONS and SOLITONS III
    ITEP-TH-31/01, IHES/P/01/27, RUNHETC-2001-18 Noncommutative Field Theory 1,2, 2,3 Michael R. Douglas ∗ and Nikita A. Nekrasov 1Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08855 U.S.A. 2Institut des Hautes Etudes Scientifiques, 35 route des Chartres, Bures-sur-Yvette France 91440 3Institute for Theoretical and Experimental Physics, 117259 Moscow Russia We review the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory, and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, both on the classical and quantum level. Submitted to Reviews of Modern Physics. Contents VI. MATHEMATICAL ASPECTS 31 A. Operator algebraic aspects 31 I. INTRODUCTION 1 B. Other noncommutative spaces 33 C. Group algebras and noncommutative quotients 34 II. KINEMATICS 3 D. Gauge theory and topology 35 A. Formal considerations 3 E. The noncommutative torus 36 1. The algebra 3 F. Morita equivalence 37 2. The derivative and integral 4 G. Deformation quantization 38 B. Noncommutative flat space-time 4 d VII. RELATIONS TO STRING AND M THEORY 1. Symmetries of IRθ 5 39 2. Plane wave basis and dipole picture 5 A. Lightning overview of M theory 39 3. Deformation, operators and symbols 5 B. Noncommutativity in M(atrix) theory 41 4. The noncommutative torus 6 C. Noncommutativity in string theory 42 C.
    [Show full text]
  • Arxiv:1108.0677V2 [Hep-Th]
    DAMTP-2011-59 MIFPA-11-34 THE SHEAR VISCOSITY TO ENTROPY RATIO: A STATUS REPORT Sera Cremonini ♣,♠ ∗ ♣ Centre for Theoretical Cosmology, DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK ♠ George and Cynthia Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University, College Station, TX 77843–4242, USA (Dated: October 22, 2018) This review highlights some of the lessons that the holographic gauge/gravity duality has taught us regarding the behavior of the shear viscosity to entropy density in strongly coupled field theories. The viscosity to entropy ratio has been shown to take on a very simple universal value in all gauge theories with an Einstein gravity dual. Here we describe the origin of this universal ratio, and focus on how it is modified by generic higher derivative corrections corresponding to curvature corrections on the gravity side of the duality. In particular, certain curvature corrections are known to push the viscosity to entropy ratio below its universal value. This disproves a longstanding conjecture that such a universal value represents a strict lower bound for any fluid in nature. We discuss the main developments that have led to insight into the violation of this bound, and consider whether the consistency of the theory is responsible for setting a fundamental lower bound on the viscosity to entropy ratio. arXiv:1108.0677v2 [hep-th] 23 Aug 2011 ∗ Electronic address: [email protected] 2 Contents I. Introduction 3 A. The quark gluon plasma and the shear viscosity to entropy ratio 4 II. The universality of η/s 6 A.
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Supreme Theory of Everything Ulaanbaatar Tarzad *Corresponding author Ulaanbaatar Tarzad, Department of Physics, School of Applied Sciences, Department of Physics, School of Applied Sciences, Mongolian Mongolian University of Science and Technology, Ulaanbaatar, Mongolia, University of Science and Technology E-mail: [email protected] Submitted: 27 Mar 2019; Accepted: 24 Apr 2019; Published: 06 June 2019 Abstract Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown. Keywords: HRD, Trigonometry, Projection of Circle, Singularity, The reality of universe describes by geometry, because of that not Celestial Body, Black Hole and Parallel Universes. only gravity is geometrical, but everything is it and nothing is linear. One of the important branches of geometry is trigonometry dealing Introduction with circle and triangle. For this reason, it is easier to describe nature Today scientists describe the universe in terms of two basic partial of universe by mathematics circle.
    [Show full text]
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
    universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors.
    [Show full text]
  • Classical Field Theories from Hamiltonian Constraint: Local
    Classical field theories from Hamiltonian constraint: Local symmetries and static gauge fields V´aclav Zatloukal∗ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Bˇrehov´a7, 115 19 Praha 1, Czech Republic and Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany We consider the Hamiltonian constraint formulation of classical field theories, which treats space- time and the space of fields symmetrically, and utilizes the concept of momentum multivector. The gauge field is introduced to compensate for non-invariance of the Hamiltonian under local trans- formations. It is a position-dependent linear mapping, which couples to the Hamiltonian by acting on the momentum multivector. We investigate symmetries of the ensuing gauged Hamiltonian, and propose a generic form of the gauge field strength. In examples we show how a generic gauge field can be specialized in order to realize gravitational and/or Yang-Mills interaction. Gauge field dynamics is not discussed in this article. Throughout, we employ the mathematical language of geometric algebra and calculus. I. INTRODUCTION The Hamiltonian constraint is a concept useful for Hamiltonian formulation not only of general relativity [1], but, in fact, of a generic field theory, as pointed out in Ref. [2, Ch. 3], and exploited further in [3] and [4]. Characteristic features of this formulation are: finite-dimensional configu- ration space, and multivector-valued momentum variable. In this respect it is congruent with the covariant (or De Donder-Weyl) Hamiltonian formalism [5{13] and should be contrasted with the canonical (or instantaneous) Hamiltonian formalism [14], which utilizes an infinite-dimensional space of field configurations defined at a given instant of time.
    [Show full text]