Black Holes and String Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generation of Angular Momentum in Cold Gravitational Collapse
A&A 585, A139 (2016) Astronomy DOI: 10.1051/0004-6361/201526756 & c ESO 2016 Astrophysics Generation of angular momentum in cold gravitational collapse D. Benhaiem1,M.Joyce2,3, F. Sylos Labini4,1,5, and T. Worrakitpoonpon6 1 Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy e-mail: [email protected] 2 UPMC Univ. Paris 06, UMR 7585, LPNHE, 75005 Paris, France 3 CNRS IN2P3, UMR 7585, LPNHE, 75005 Paris, France 4 Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89 A, Compendio del Viminale, 00184 Rome, Italy 5 INFN Unit Rome 1, Dipartimento di Fisica, Universitá di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy 6 Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Nonthaburi Campus, 11000 Nonthaburi, Thailand Received 16 June 2015 / Accepted 4 November 2015 ABSTRACT During the violent relaxation of a self-gravitating system, a significant fraction of its mass may be ejected. If the time-varying gravi- tational field also breaks spherical symmetry, this mass can potentially carry angular momentum. Thus, starting initial configurations with zero angular momentum can, in principle, lead to a bound virialised system with non-zero angular momentum. Using numerical simulations we explore here how much angular momentum can be generated in a virialised structure in this way, starting from con- figurations of cold particles that are very close to spherically symmetric. For the initial configurations in which spherical symmetry is broken only by the Poissonian fluctuations associated with the finite particle number N, with N in range 103 to 105, we find that the relaxed structures have standard “spin” parameters λ ∼ 10−3, and decreasing slowly with N. -
Special and General Relativity with Applications to White Dwarfs, Neutron Stars and Black Holes
Norman K. Glendenning Special and General Relativity With Applications to White Dwarfs, Neutron Stars and Black Holes First Edition 42) Springer Contents Preface vii 1 Introduction 1 1.1 Compact Stars 2 1.2 Compact Stars and Relativistic Physics 5 1.3 Compact Stars and Dense-Matter Physics 6 2 Special Relativity 9 2.1 Lorentz Invariance 11 2.1.1 Lorentz transformations 11 2.1.2 Time Dilation 14 2.1.3 Covariant vectors 14 2.1.4 Energy and Momentum 16 2.1.5 Energy-momentum tensor of a perfect fluid 17 2.1.6 Light cone 18 3 General Relativity 19 3.1 Scalars, Vectors, and Tensors in Curvilinear Coordinates 20 3.1.1 Photon in a gravitational field 28 3.1.2 Tidal gravity 29 3.1.3 Curvature of spacetime 30 3.1.4 Energy conservation and curvature 30 3.2 Gravity 32 3.2.1 Einstein's Discovery 32 3.2.2 Particle Motion in an Arbitrary Gravitational Field 32 3.2.3 Mathematical definition of local Lorentz frames . 35 3.2.4 Geodesics 36 3.2.5 Comparison with Newton's gravity 38 3.3 Covariance 39 3.3.1 Principle of general covariance 39 3.3.2 Covariant differentiation 40 3.3.3 Geodesic equation from covariance principle 41 3.3.4 Covariant divergente and conserved quantities . 42 3.4 Riemann Curvature Tensor 45 x Contents 3.4.1 Second covariant derivative of scalars and vectors 45 3.4.2 Symmetries of the Riemann tensor 46 3.4.3 Test for flatness 47 3.4.4 Second covariant derivative of tensors 47 3.4.5 Bianchi identities 48 3.4.6 Einstein tensor 48 3.5 Einstein's Field Equations 50 3.6 Relativistic Stars 52 3.6.1 Metric in static isotropic spacetime 53 -
Holographic Principle and Applications to Fermion Systems
Imperial College London Master Dissertation Holographic Principle and Applications to Fermion Systems Author: Supervisor: Napat Poovuttikul Dr. Toby Wiseman A dissertation submitted in fulfilment of the requirements for the degree of Master of Sciences in the Theoretical Physics Group Imperial College London September 2013 You need a different way of looking at them than starting from single particle descriptions.You don't try to explain the ocean in terms of individual water molecules Sean Hartnoll [1] Acknowledgements I am most grateful to my supervisor, Toby Wiseman, who dedicated his time reading through my dissertation plan, answering a lot of tedious questions and give me number of in- sightful explanations. I would also like to thanks my soon to be PhD supervisor, Jan Zaanen, for sharing an early draft of his review in this topic and give me the opportunity to work in the area of this dissertation. I cannot forget to show my gratitude to Amihay Hanay for his exotic string theory course and Michela Petrini for giving very good introductory lectures in AdS/CFT. I would particularly like to thanks a number of friends who help me during the period of the dissertation. I had valuable discussions with Simon Nakach, Christiana Pentelidou, Alex Adam, Piyabut Burikham, Kritaphat Songsriin. I would also like to thanks Freddy Page and Anne-Silvie Deutsch for their advices in using Inkscape, Matthew Citron, Christiana Pantelidou and Supakchi Ponglertsakul for their helps on Mathematica coding and typesetting latex. The detailed comments provided -
M Theory As a Holographic Field Theory
hep-th/9712130 CALT-68-2152 M-Theory as a Holographic Field Theory Petr Hoˇrava California Institute of Technology, Pasadena, CA 91125, USA [email protected] We suggest that M-theory could be non-perturbatively equivalent to a local quantum field theory. More precisely, we present a “renormalizable” gauge theory in eleven dimensions, and show that it exhibits various properties expected of quantum M-theory, most no- tably the holographic principle of ’t Hooft and Susskind. The theory also satisfies Mach’s principle: A macroscopically large space-time (and the inertia of low-energy excitations) is generated by a large number of “partons” in the microscopic theory. We argue that at low energies in large eleven dimensions, the theory should be effectively described by arXiv:hep-th/9712130 v2 10 Nov 1998 eleven-dimensional supergravity. This effective description breaks down at much lower energies than naively expected, precisely when the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for a covariant, non-perturbative formulation of quantum M-theory. December 1997 1. Introduction M-theory has emerged from our understanding of non-perturbative string dynamics, as a hypothetical quantum theory which has eleven-dimensional supergravity [1] as its low- energy limit, and is related to string theory via various dualities [2-4] (for an introduction and references, see e.g. -
Stellar Equilibrium Vs. Gravitational Collapse
Eur. Phys. J. H https://doi.org/10.1140/epjh/e2019-100045-x THE EUROPEAN PHYSICAL JOURNAL H Stellar equilibrium vs. gravitational collapse Carla Rodrigues Almeidaa Department I Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Received 26 September 2019 / Received in final form 12 December 2019 Published online 11 February 2020 c The Author(s) 2020. This article is published with open access at Springerlink.com Abstract. The idea of gravitational collapse can be traced back to the first solution of Einstein's equations, but in these early stages, com- pelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical mod- els describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer's work on astrophysics. 1 Introduction Gravitationally collapsed objects are the conceptual precursor to black holes, and their history sheds light on how such a counter-intuitive idea was accepted long before there was any concrete proof of their existence. A black hole is a strong field structure of space-time surrounded by a unidirectional membrane that encloses a singularity. General relativity (GR) predicts that massive enough bodies will collapse into black holes. In fact, the first solution of Einstein's field equations implies the existence of black holes, but this conclusion was not reached at the time because the necessary logical steps were not as straightforward as they appear today. -
Duality and Strings Dieter Lüst, LMU and MPI München
Duality and Strings Dieter Lüst, LMU and MPI München Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) ➢ Madrid (Spanish) Quiver ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. -
Non-Holomorphic Cycles and Non-BPS Black Branes Arxiv
Non-Holomorphic Cycles and Non-BPS Black Branes Cody Long,1;2 Artan Sheshmani,2;3;4 Cumrun Vafa,1 and Shing-Tung Yau2;5 1Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA 2Center for Mathematical Sciences and Applications, Harvard University Cambridge, MA 02139, USA 3Institut for Matematik, Aarhus Universitet 8000 Aarhus C, Denmark 4 National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, Moscow, Russia, 119048 5Department of Mathematics, Harvard University Cambridge, MA 02138, USA We study extremal non-BPS black holes and strings arising in M-theory compactifica- tions on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural for- mula for the asymptotic volumes of connected, locally volume-minimizing representa- tives of non-holomorphic, even-dimensional homology classes in the threefold, without arXiv:2104.06420v1 [hep-th] 13 Apr 2021 knowledge of an explicit metric. In the case of divisors we find examples where the vol- ume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon AdS3 limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non- supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles). -
Limits on New Physics from Black Holes Arxiv:1309.0530V1
Limits on New Physics from Black Holes Clifford Cheung and Stefan Leichenauer California Institute of Technology, Pasadena, CA 91125 Abstract Black holes emit high energy particles which induce a finite density potential for any scalar field φ coupling to the emitted quanta. Due to energetic considerations, φ evolves locally to minimize the effective masses of the outgoing states. In theories where φ resides at a metastable minimum, this effect can drive φ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to φ. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking. arXiv:1309.0530v1 [hep-ph] 2 Sep 2013 1 Contents 1 Introduction3 2 Finite Density Potential4 2.1 Hawking Radiation Distribution . .4 2.2 Classical Derivation . .6 2.3 Quantum Derivation . .8 3 Catalyzed Vacuum Decay9 3.1 Scalar Potential . .9 3.2 Point Particle Instability . 10 3.3 Black Hole Instability . 11 3.3.1 Tadpole Instability . -
Pitp Lectures
MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist. -
String Theory and Pre-Big Bang Cosmology
IL NUOVO CIMENTO 38 C (2015) 160 DOI 10.1393/ncc/i2015-15160-8 Colloquia: VILASIFEST String theory and pre-big bang cosmology M. Gasperini(1)andG. Veneziano(2) (1) Dipartimento di Fisica, Universit`a di Bari - Via G. Amendola 173, 70126 Bari, Italy and INFN, Sezione di Bari - Bari, Italy (2) CERN, Theory Unit, Physics Department - CH-1211 Geneva 23, Switzerland and Coll`ege de France - 11 Place M. Berthelot, 75005 Paris, France received 11 January 2016 Summary. — In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe “bounce” into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a “hot big bounce” in which the bouncing and heating mechanisms originate from the quan- tum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a “blue” spectral index with a peak in the GHz frequency range. -
From Vibrating Strings to a Unified Theory of All Interactions
Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory. -
Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .