(Thermo)Dynamics of D-Brane Probes

Total Page:16

File Type:pdf, Size:1020Kb

(Thermo)Dynamics of D-Brane Probes Trieste Meeting of the TMR Network on Physics beyond the SM1 PROCEEDINGS (Thermo)dynamics of D-brane probes E. Kiritsis∗,T.Taylor# ∗ Physics Department, University of Crete, 71003, Heraklion, GREECE # Physics Department, Northeastern University, Boston, MA 02115, USA E-mail: [email protected], [email protected] Abstract: We discuss the dynamics and thermodynamics of particle and D-brane probes moving in non-extremal black hole/brane backgrounds. When a probe falls from asymptotic infinity to the horizon, it transforms its potential energy into heat, TdS, which is absorbed by the black hole in a way consistent with the first law of thermodynamics. We show that the same remains true in the near-horizon limit, for BPS probes only, with the BPS probe moving from AdS infinity to the horizon. This is a quantitative indication that the brane-probe reaching the horizon corresponds to thermalization in gauge theory. It is shown that this relation provides a way to reliably compute the entropy away from the extremal limit (towards the Schwarzschild limit). 2 1. Introduction and conclusions Hooft coupling gYMN. The SYM/AdS correspondence and its ther- The black D-brane solutions of type II super- mal black hole generalizations emerge in a par- gravity [1] and their near-horizon geometry [2] ticular limit of N D-branes coinciding at one are the central elements of CFT/Anti-deSitter point in the transverse space; this corresponds (AdS) correspondence [3, 4, 5]. In particular, to a conformal point in the SYM moduli space, the (3+1)-dimensional world-volume of N coin- with zero vacuum expectation values (vevs) of N ciding, extremal D3-branes is the arena of =4 all scalar fields. Before taking the near-horizon supersymmetric SU(N) Yang-Mills (SYM) the- limit one could also consider some other configu- ory which in the large N limit, according to the rations, obtained for instance by placing a num- Maldacena conjecture [3], is linked to type IIB ber of D-branes in the bulk of AdS; this corre- superstrings propagating on (the near-horizon) sponds to switching on some scalar vevs on the × 5 AdS5 S background geometry. Recently, there Higgs branch of the gauge theory. In this work, has been an interesting proposal [6] linking the we consider the case of a single D-brane probe N thermodynamics of large N, =4 supersymmet- in the background of a near-extremal black hole ric SU(N) Yang-Mills theory with the thermo- with a large number of coinciding D-branes. We dynamics of Schwarzschild black holes embed- consider a probe moving from asymptotic infin- ded in the AdS space [7]. The classical geom- ity towards the black hole horizon. As the probe etry of black holes with Hawking temperature moves through the horizon, the black hole re- T encodes the magnetic confinement, mass gap ceives the quantity of heat that is determined and other qualitative features of large N gauge by the first law of thermodynamics. The cor- theory heated up to the same temperature. At responding change in black hole entropy is con- the computational level, the quantity that has sistent with thermodynamical identities. Hence been discussed to the largest extent [8, 6, 9] is from the thermodynamical point of view, the D- the Bekenstein-Hawking entropy which, in the brane gas is physically located at the black hole near-horizon limit, should be related to the en- horizon. tropy of Yang-Mills gas at N →∞and large ’t We can then consider a similar process in ∗Talk presented by the second author. the near-horizon limit description. That is, a Trieste Meeting of the TMR Network on Physics beyond the SM1 E. Kiritsis∗,T.Taylor# probe brane is falling from the boundary of the junction with entropy calculations, done near the appropriate space (AdS5 for D3-branes) rather limit where supersymmetry is restored (and thus than from spatial infinity, to the horizon. We the calculation is reliable) and then extrapolated find again, for BPS probes, that the potential to the Schwarzschild region where supersymme- energy released is equal to the heat, TdS,ab- try is completely broken and calculations are dif- sorbed by the black hole. Thus, this process can ficult to control. be used to calculate the entropy of gauge theory This talk is based on results obtained in col- in an alternative way by integrating back the po- laboration with Constantin Bachas [12]. We will tential energy. Moreover, this process has now first describe in detail the case of Reissner-Nordstr¨om an interpretation in terms of the spontaneously black holes in four dimensions and their near- broken SU(N +1)→SU(N) × U(1) gauge the- horizon limit. Then we will describe arbitrary ory. At T = 0, any Higgs expectation value is black Dp-branes and finally focus on the near- stable, since it is a modulus protected by su- horizon limit of D3-branes. persymmetry. Once T>0, supersymmetry is broken, and the Higgs acquires a potential with 2. Reissner-Nordstr¨om black holes an absolute minimum at zero expectation value. Starting with the theory at the top of the po- In order to see how probes can be used to study tential (very large expectation value) the Higgs black hole thermodynamics, it is instructive to will start rolling down. The Higgs field reaching consider first the case of a point particle propa- an expectation value of the order of the electric gating in the background geometry of a charged mass corresponds in supergravity to the probe black hole. The Reissner-Nordstr¨om (RN) met- reaching the horizon. At this point, the energy ric for a charged black hole with ADM mass M and electric charge Q reads stored in the Higgs field is thermalized and equal ! 2 2 2 2 to the overall heat received by the thermal Yang- 2lpM lpQ 2lpM ds2 = − 1 − + dt2+ 1 − + Mills system. This makes more precise a similar r r2 r picture described in [10]. From the supergrav- !−1 2 2 ity point of view the brane continues to move, lpQ + dr2 + r2dΩ2 (2.1) crossing the horizon. It is not obvious what this r2 2 motion corresponds to in gauge theory (but see 2 where GN = l is Newton’s constant. There is [10] for a proposal). p also a static electromagnetic potential, which can We consider also the effects of higher order Q be obtained from Gauss’ law, A0 = .Theouter α0 corrections to the probe action. Such correc- r and inner horizons are located at r+ and r− with tions have been partially computed for the appro- q 2 2 − 2 2 priate backgrounds directly in the near-horizon r = lp M M Q =lp . The standard limit [11]. We argue that that although there are expression for the Bekenstein-Hawking entropy, 0 2 α corrections to the D-brane world-volume ac- Area πr+ S(M;Q)= = 2 ; (2.2) tion, they do not influence the calculation of the 4GN lp heat in our argument. can be thought of as the ‘equation of state’ in the In all of the examples analyzed here, the microcanonical ensemble. From it we can obtain probe method can be viewed as an independent the temperature and ‘chemical potential’ of the method of “measuring the entropy” by integrat- black hole ing the heat, TdS. In particular, it provides a 2 1 @S 4πr+ @S Q first order partial differential equation for the en- ≡ = ,µ≡−T = : 0 T @M r+ − r− @Q r+ tropy in terms of mass M and charge Q. α - Q M corrections do not modify the leading equation. (2.3) The only source of stringy corrections to the en- The free energy and grand canonical potential tropy equation comes from bulk α0-corrections can also be obtained by the standard thermo- to the RR gauge potential at the horizon. This dynamic expressions, F ≡ M − TS and A ≡ equation is important since it can be used in con- M − TS−µQ. 2 Trieste Meeting of the TMR Network on Physics beyond the SM1 E. Kiritsis∗,T.Taylor# Consider next the process in which a probe This partial differential equation can be integrated particle with mass m and electric charge q falls for the equation of state S(M;Q), provided we inside the black hole. The black hole plus par- know already the answer on some (initial) curve ticle form an isolated system, with total mass in the (M;Q) plane, such as for Schwarzschild M + m and total charge Q + q, which will even- black holes Q = 0 or extremal black holes, M = tually reach thermal equilibrium. The entropy Q=lp. Notice that even though the thermody- will therefore change by an amount namic properties of a Schwarzschild black hole are in an essential way quantum (¯h enters in the @S @S δS = m + q: (2.4) expressions for both temperature and entropy), @M @Q Q M the extension to charged black holes follows from the simple classical argument outlined here. Such Using the explicit form of the chemical potential, a differential equation may turn out to be prac- derived from the ‘equation of state’, we find tically important. Several thermodynamic prop- Qq TδS = m− : (2.5) erties seem to be more easily computable on or r+ close to the extremal limit. There, supersymme- This equation admits a simple interpretation as try is of help as evidenced by recent D-brane/black the heat released by the probe particle while falling hole calculations [13]. Being able to calculate at inside the black hole. The action for such a par- the extremal boundary of the (M;Q) plane, one ticle indeed reads can use (2.9) to extrapolate the calculation to Z Z p the whole plane, most importantly in the region µ ν µ Γ=m dτ −Gµν x˙ x˙ + q dτAµx˙ : (2.6) Q = 0 where supersymmetry is completely bro- ken.
Recommended publications
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]
  • What Lattice Theorists Can Do for Superstring/M-Theory
    July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles.
    [Show full text]
  • Refined Topological Branes Arxiv:1805.00993V1 [Hep-Th] 2 May 2018
    ITEP-TH-08/18 IITP-TH-06/18 Refined Topological Branes Can Koz¸caza;b;c;1 Shamil Shakirovd;e;f;2 Cumrun Vafac and Wenbin Yang;b;c;3 aDepartment of Physics, Bo˘gazi¸ciUniversity 34342 Bebek, Istanbul, Turkey bCenter of Mathematical Sciences and Applications, Harvard University 20 Garden Street, Cambridge, MA 02138, USA cJefferson Physical Laboratory, Harvard University 17 Oxford Street, Cambridge, MA 02138, USA dSociety of Fellows, Harvard University Cambridge, MA 02138, USA eInstitute for Information Transmission Problems, Moscow 127994, Russia f Mathematical Sciences Research Institute, Berkeley, CA 94720, USA gYau Mathematical Sciences Center, Tsinghua University, Haidian district, Beijing, China, 100084 Abstract: We study the open refined topological string amplitudes using the refined topological vertex. We determine the refinement of holonomies necessary to describe the boundary conditions of open amplitudes (which in particular satisfy the required integrality properties). We also derive the refined holonomies using the refined Chern- Simons theory. arXiv:1805.00993v1 [hep-th] 2 May 2018 1Current affiliation Bo˘gazi¸ciUniversity 2Current affiliation Mathematical Sciences Research Institute 3Current affiliation Yau Mathematical Sciences Center Contents 1 Introduction1 2 Topological Branes3 2.1 External topological branes5 2.2 Internal topological branes7 2.2.1 Topological t-branes8 2.2.2 Topological q-branes 10 3 Topological Branes from refined Chern-Simons Theory 11 3.1 Topological t-branes from refined Chern-Simons theory 13 3.2 Topological q-branes from refined Chern-Simons theory 15 3.3 Duality relation and brane changing operator 15 4 Application: Double compactified toric Calabi-Yau 3-fold 17 4.1 Generic case 19 4.2 Case Qτ = 0 20 4.3 Case Qρ = 0 21 5 Discussion and Outlook 22 A Appenix A: Useful Identities 23 1 Introduction Gauge theories with N = 2 supersymmetry in 4d have been important playground for theoretical physics since the celebrated solution of Seiberg and Witten [1,2].
    [Show full text]
  • Black Holes and String Theory
    Black Holes and String Theory Hussain Ali Termezy Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London September 2012 Contents 1 Black Holes in General Relativity 2 1.1 Black Hole Solutions . 2 1.2 Black Hole Thermodynamics . 5 2 String Theory Background 19 2.1 Strings . 19 2.2 Supergravity . 23 3 Type IIB and Dp-brane solutions 25 4 Black Holes in String Theory 33 4.1 Entropy Counting . 33 Introduction The study of black holes has been an intense area of research for many decades now, as they are a very useful theoretical construct where theories of quantum gravity become relevant. There are many curiosities associated with black holes, and the resolution of some of the more pertinent problems seem to require a quantum theory of gravity to resolve. With the advent of string theory, which purports to be a unified quantum theory of gravity, attention has naturally turned to these questions, and have remarkably shown signs of progress. In this project we will first review black hole solutions in GR, and then look at how a thermodynamic description of black holes is made possible. We then turn to introduce string theory and in particular review the black Dp-brane solutions of type IIB supergravity. Lastly we see how to compute a microscopic account of the Bekenstein entropy is given in string theory. 1 Chapter 1 Black Holes in General Relativity 1.1 Black Hole Solutions We begin by reviewing some the basics of black holes as they arise in the study of general relativity.
    [Show full text]
  • Supersymmetric Partition Functions and a String Theory in 4 Dimensions Arxiv:1209.2425V1 [Hep-Th] 11 Sep 2012
    Supersymmetric Partition Functions and a String Theory in 4 Dimensions Cumrun Vafa Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA Abstract We propose a novel string theory propagating in a non-commutative deformation of the four dimensional space T ∗T2 whose scattering states correspond to superconformal theories in 5 dimensions and the scattering amplitudes compute superconformal indices of the corresponding 5d theories. The superconformal theories are obtained by M- theory compactifications on singular CY 3-folds or equivalently from a web of 5-branes of type IIB strings. The cubic interaction of this string theory for primitive winding modes corresponds to the (refined) topological vertex. The oscillator modes of the string theory correspond to off-shell states and carry information about co-dimension arXiv:1209.2425v1 [hep-th] 11 Sep 2012 2 defects of the superconformal theory. Particular limits of a subset of scattering amplitudes of this string theory lead to the partition functions of An Gaiotto theories for all n, compactified on S4, i.e., to amplitudes of all Toda theories. 1 Introduction Protected amplitudes of supersymmetric theories are frequently captured by topological theories. These are typically holomorphic quantities. In the context of supersymmetric theories arising in string theory these are computed by topological string amplitudes. With the work of Pestun [1] on partition function of supersymmetric theories on S4, it became clear that not only holomorphic amplitudes of supersymmetric theories can arise in partition functions but also combinations of topological/anti-topological amplitudes arise{very much along the lines of tt∗ geometry studied in the 2d context [2].
    [Show full text]
  • Asymptotic M5-Brane Entropy from S-Duality” 1702.04058
    On S-duality and 6d CFTs Seok Kim (Seoul National University) Autumn symposium on string theory, KIAS Sep 12, 2017 Talk based on: SK, June Nahmgoong, “Asymptotic M5-brane entropy from S-duality” 1702.04058. + more works in (slow) progress Some related works: Billo, Frau, Fucito, Lerda, Morales, “S-duality and the prepotential in N=2* theories (I): the ADE algebras” 1507.07709. Haghighat, Iqbal, Kozcaz, Lockhart, Vafa, “M-strings” 1305.6322. Di Pietro, Komargodski, “Cardy formulae for SUSY theories in d=4 and d=6” 1407.6061. Galakhov, Mironov, Morozov, “S-duality & modular transformation as a non-perturbative deformation of the ordinary pq-duality” 1311.7069. S-duality • Relation between two interacting QFTs w/ coupling constants inversed. • 3+1d gauge theories: electric-magnetic duality • Simple example: maximal super-Yang-Mills [Montonen, Olive] [Osborn] - Evidences: dyon spectrum [Sen], various partition functions [Vafa, Witten] … , etc. • Accounted for by embedding into bigger systems - D3’s on type IIB: consequence of S-duality of IIB string theory - A smaller embedding, in QFT: 6d N=(2,0) QFT (e.g. on M5’s) on 푇2 W-boson 휃 4휋푖 complex structure 휏 = + ~ 4d coupling constant 2휋 푔2 푌푀 monopole - Tied to subtle properties of 6d QFTs • 6d (2,0) theory has been a guidance to S-duality. Can it be true the other way? 3 The observable • N M5’s on S1 : an index for BPS states in the tensor branch. 푍[푅4 × 푇2] - bound states of wrapped self-dual strings & momenta • IIA picture: k D0’s bound to N D4’s & F1’s [Nekrasov] (2002) [Bruzzo, Fucito, Morales, Tanzini] (2002) [Nekrasov, Okounkov] (2003) [H.-C.
    [Show full text]
  • D-Brane Actions and N = 2 Supergravity Solutions
    D-Brane Actions and N =2Supergravity Solutions Thesis by Calin Ciocarlie In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Submitted May 20 , 2004) ii c 2004 Calin Ciocarlie All Rights Reserved iii Acknowledgements I would like to express my gratitude to the people who have taught me Physics throughout my education. My thesis advisor John Schwarz has given me insightful guidance and invaluable advice. I benefited a lot by collaborating with outstanding colleagues: Iosif Bena, Iouri Chepelev, Peter Lee, Jongwon Park. I have also bene- fited from interesting discussions with Vadim Borokhov, Jaume Gomis, Prof. Anton Kapustin, Tristan McLoughlin, Yuji Okawa, and Arkadas Ozakin. I am also thankful to my Physics teacher Violeta Grigorie who’s enthusiasm for Physics is contagious and to my family for constant support and encouragement in my academic pursuits. iv Abstract Among the most remarkable recent developments in string theory are the AdS/CFT duality, as proposed by Maldacena, and the emergence of noncommutative geometry. It has been known for some time that for a system of almost coincident D-branes the transverse displacements that represent the collective coordinates of the system become matrix-valued transforming in the adjoint representation of U(N). From a geometrical point of view this is rather surprising but, as we will see in Chapter 2, it is closely related to the noncommutative descriptions of D-branes. A consequence of the collective coordinates becoming matrix-valued is the ap- pearance of a “dielectric” effect in which D-branes can become polarized into higher- dimensional fuzzy D-branes.
    [Show full text]
  • Conifold Transitions and Five-Brane Condensation in M-Theory on Spin(7
    INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 20 (2003) 665–705 PII: S0264-9381(03)53801-1 Conifold transitions and five-brane condensation in M-theory on Spin(7) manifolds Sergei Gukov1,JamesSparks2 and David Tong3 1 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK 3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected], [email protected] and [email protected] Received 23 September 2002, in final form 6 January 2003 Published 28 January 2003 Online at stacks.iop.org/CQG/20/665 Abstract We conjecture a topology-changing transition in M-theory on a non-compact asymptotically conical Spin(7) manifold, where a 5-sphere collapses and a CP2 bolt grows. We argue that the transition may be understood as the condensation of M5-branes wrapping S5.Upon reduction to ten dimensions, it has a physical interpretation as a transition of D6-branes lying on calibrated submanifolds of flat space. In yet another guise, it may be seen as a geometric transition between two phases of type IIA string theory on a G2 holonomy manifold with either wrapped D6-branes, or background Ramond–Ramond flux. This is the first non-trivial example of a topology-changing transition with only 1/16 supersymmetry. PACS numbers: 11.25.Mj, 11.30.Pb, 11.15.Tk Contents 1. Introduction 666 2. D6-branes, M-theory and Spin(7) conifolds 670 2.1.
    [Show full text]
  • Towards Uniform T-Duality Rules
    Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 659–662 Towards Uniform T-Duality Rules Alexei J. NURMAGAMBETOV Institute for Theoretical Physics, NSC “Kharkov Institute of Physics and Technology”, 1 Akademicheskaya Str., 61108, Kharkov, Ukraine Center for Theoretical Physics, Texas A&M University, College Station, TX 77843, USA E-mail: [email protected] In this contribution based on the talk given at the SUSY’01, Dubna, Russia, I discuss the reasons of appearing the different sets of fields entering into the T-duality transformations and a way to construct the uniform T-duality rules. 1 Introduction Discovery in the past decade of the new class of non-compact symmetries allowed to revise one of the main problems of Superstrings: The puzzle of having too much “fundamental” theories. The resolution was in the conjecture on the M-theory in framework of which it turned out possible to unify all the five different superstring theories. The useful tool for establishing the M-theory evidence are dualities connected to the new symmetries of perturbative or non-perturbative sectors of Superstrings. In this Contribution I would like to discuss some questions related to the so-called T-duality (see [1] for review). Namely, I will focus my attention on the following: Q1: What are the different ways of T-duality rules derivation? Q2: Do the T-duality rules coincide? Q3: How uniform T-duality rules could be derived? For the sake of simplicity I restrict myself in what follows to the pure classical frames, that means neglecting the dilaton field, which receives its corrections from quantum effects, and will consider backgrounds with single isometry direction.
    [Show full text]