CO-Dependent Hydrogen Production by the Facultative Anaerobe Parageobacillus Thermoglucosidasius

Total Page:16

File Type:pdf, Size:1020Kb

CO-Dependent Hydrogen Production by the Facultative Anaerobe Parageobacillus Thermoglucosidasius Mohr et al. Microb Cell Fact (2018) 17:108 https://doi.org/10.1186/s12934-018-0954-3 Microbial Cell Factories RESEARCH Open Access CO‑dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius Teresa Mohr1,4* , Habibu Aliyu1, Raphael Küchlin1, Shamara Polliack2, Michaela Zwick1, Anke Neumann1, Don Cowan2 and Pieter de Maayer3 Abstract Background: The overreliance on dwindling fossil fuel reserves and the negative climatic efects of using such fuels are driving the development of new clean energy sources. One such alternative source is hydrogen (H­ 2), which can be generated from renewable sources. Parageobacillus thermoglucosidasius is a facultative anaerobic thermophilic bacte- rium which is frequently isolated from high temperature environments including hot springs and compost. Results: Comparative genomics performed in the present study showed that P. thermoglucosidasius encodes two evolutionary distinct ­H2-uptake [Ni-Fe]-hydrogenases and one ­H2-evolving hydrogenases. In addition, genes encod- ing an anaerobic CO dehydrogenase (CODH) are co-localized with genes encoding a putative ­H2-evolving hydroge- nase. The co-localized of CODH and uptake hydrogenase form an enzyme complex that might potentially be involved in catalyzing the water-gas shift reaction (CO ­H2O ­CO2 ­H2) in P. thermoglucosidasius. Cultivation of P. thermo- glucosidasius DSM ­2542T with an initial gas atmosphere+ → of 50%+ CO and 50% air showed it to be capable of growth at elevated CO concentrations (50%). Furthermore, GC analyses showed that it was capable of producing hydrogen at an equimolar conversion with a fnal yield of 1.08 ­H2/CO. Conclusions: This study highlights the potential of the facultative anaerobic P. thermoglucosidasius DSM 2542­ T for developing new strategies for the biohydrogen production. Keywords: Biohydrogen production, Parageobacillus thermoglucosidasius, Carbon monoxide dehydrogenase, Hydrogenase, Water-gas shift reaction Background Hydrogen ­(H2) has recently become prominent as In the next 30 years, the global energy demand will a very attractive clean and sustainable energy source, expand by ca. 30% and the vast majority (ca. 85%) of the especially when generated via ‘eco-friendly’ strategies. energy resources required to ofset the rising demand will In comparison to other fuels, ­H2 has the highest energy come from non-renewable sources such as natural gas content (141.9 MJ/kg higher heating value) [2]. Addi- and crude oil [1]. Tis will result in increased pressure on tionally, its complete combustion with pure oxygen pro- the dwindling fossil fuel reserves and in greater emission duces only water (2 ­H2 + O2 → 2 ­H2O) as a by-product. of greenhouse gases into the Earth’s atmosphere. Tere is Te majority of current industrial ­H2 production strat- thus an urgent need for further development and imple- egies, such as coal gasifcation, steam reformation and mentation of clean and renewable alternative energy partial oxidation of oil, are unsustainable, harmful to sources [2, 3]. the environment, energy intensive and expensive [4, 5]. As such, over the past few years, the production of *Correspondence: [email protected] ­H via microbial catalysis has drawn increasing inter- 4 Section II: Technical Biology, Institute of Process Engineering in Life 2 Science, Karlsruhe Institut für Technologie (KIT), Kaiserstrasse 12, est. Several diferent strategies to produce biohydro- 76131 Karlsruhe, Germany gen, such as photofermentation of organic substances Full list of author information is available at the end of the article © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Mohr et al. Microb Cell Fact (2018) 17:108 Page 2 of 12 by photosynthetic bacteria, bio-photolysis of water by Methods algae and dark fermentation of organic substances by Microorganisms anaerobic microorganism, have been explored [6]. Tese Te production of H2 by P. thermoglucosidasius when strategies have the advantage of lower energy expendi- grown in the presence of CO was tested using P. ther- ture, lower cost and higher yields than the industrial moglucosidasius DSM 2542T. Two related strains, methods [7]. Another advantage is the potential to use Geobacillus thermodenitrifcans DSM 465T and P. toe- cheap feedstocks, such as lignocellulosic waste bio- bii DSM 14590 T, which lack orthologues of the three mass, which can be converted into a gas mixture termed hydrogenase loci as well as the CODH locus, were ‘synthesis gas’. Tis gas consists primarily of carbon included as controls. All strains were obtained from monoxide (CO), carbon dioxide (CO2) and H2 [8]. In a the DSMZ (Deutsche Sammlung von Mikroorganismen further step, the CO can react with water to generate und Zellkulturen GmbH, Braunschweig, Germany). H2 via a biologically- or chemically-mediated water-gas shift (WGS) reaction: CO + H2O → CO2 + H2. During the biologically mediated reaction, a carbon monoxide Culture conditions and media dehydrogenase (CODH) oxidizes CO and electrons are Pre-cultures and cultures were grown aerobically in released. Subsequently, a coupled hydrogenase reduces mLB (modifed Luria–Bertani) medium containing the released electrons to molecular hydrogen [9]. Sev- tryptone (1% w/v), yeast extract (0.5% w/v), NaCl (0.5% eral mesophilic, anaerobic prokaryotic taxa, including w/v), 1.25 ml/l NaOH (10% w/v), and 1 ml/l of each of Rhodospirillum rubrum and Rhodopseudomonas palus- the flter-sterilized stock solutions: 1.05 M nitrilotri- tris, are known for the ability to perform the WGS reac- acetic acid, 0.59 M MgSO4·7H2O, 0.91 M CaCl2·2H2O tion [10]. and 0.04 M FeSO4·7H2O. Te frst pre-culture was It has been observed that higher yields of H2 can be inoculated from glycerol stock (20 µl in 20 ml mLB) and obtained in higher temperature fermentations [11]. cultivated for 24 h at 60 °C and rotation at 120 rpm in Thus, there has been increasing interest in the use of an Infors Termotron (Infors AG, Bottmingen, Swit- thermophilic anaerobic bacteria, such as Carboxydo- zerland). A second pre-culture was inoculated from the thermus hydrogenoformans and Thermosinus carboxy- frst one to an OD600 of 0.1 and incubated as above for divorans [12, 13], as well thermophilic archaea (e.g. 12 h. For the experiments, 250 ml serum bottles were Thermococcus onnurineus) [7]. prepared with 50 ml mLB and a gas phase of 50% CO An industrial process utilizing CO-oxidizing bacte- and 50% atmospheric air at 1 bar atmospheric pressure, ria for biohydrogen production has not yet been real- which were inoculated with 1 ml from the second pre- ized, although many CO-using hydrogenogenic species culture. Te experiments were conducted in quadrupli- have been isolated. This may largely be attributed to cate for a total duration of 84 h. the sensitivity of both the hydrogenase and CODH enzymes to oxygen [6, 14]. For example, the hydro- genase of Thermotoga maritima lost 80% of its activ- Analytical methods ity after flushing with air for 10 s [15]. Removal of O 2 Samples were taken at diferent time points during the from industrial waste gases or from bioreactors is pro- experimental procedure. Before and after the sampling hibitively expensive, making the use of strictly anaero- the pressure was measured using a manometer (GDH bic CO-oxidizing hydrogenogens unfeasible [16]. Here, 14 AN, Greisinger electronic, Regenstauf, Germany). we have analysed the hydrogenogenic capacity of the To monitor the growth of the cultures, 1 ml of the cul- facultative anaerobe Parageobacillus thermoglucosi- ture was aspirated through the stopper and absorb- dasius. Comparative genomics revealed the presence ance was measured at OD600 using an Ultrospec 1100 of three distinct hydrogenases, two uptake hydroge- pro spectrophotometer (Amersham Biosciences, USA). nases as well as one H2-evolving hydrogenase, which Te determination of the gas compositions at diferent is linked to an anaerobic CODH. Evolutionary analy- time points was conducted using a 3000 Micro GC gas sis showed that this combination of hydrogenases is analyzer (Infcon, Bad Ragaz, Switzerland) with the col- unique to P. thermoglucosidasius and suggests that umns Molsieve and PLOT Q. A total of 3 ml was sam- H2 plays a pivotal in the bioenergetics of this organ- pled from the head space and injected into the GC. A ism. Furthermore, fermentations and downstream GC constant temperature of 80 °C was maintained during analysis showed that this facultative anaerobe is capa- the total analysis time of 180 s. Te gas compositions at ble of utilizing CO in the WGS reaction to generate an the diferent sampling points were calculated using the equimolar amount of H2 once most of the oxygen in formulas in Additional fle 1. the medium has been exhausted. Mohr et al. Microb Cell Fact (2018) 17:108 Page 3 of 12 Comparative genomic analyses 1d uptake hydrogenase (E-value = 0.0). Tis unidirec- Te large hydrogenase subunits were identifed from the tional, membrane-bound, O2-tolerant hydrogenase is annotated genome of P. thermoglucosidasius DSM 2542T present in a broad range of obligately aerobic and facul- (CP012712.1) by comparison against the Hydrogenase tatively anaerobic soil-borne, aquatic and host-associated DataBase (HyDB) [17]. Te full hydrogenase loci were taxa such as Ralstonia eutropha, Escherichia coli and identifed by searching the genome up- and downstream Wolinella succinogenes [25, 26]. Te H 2 molecules con- of the large subunit gene, extracted and mapped against sumed by group 1d hydrogenases are coupled to aerobic the genome using the CGView server [18].
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
    fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production.
    [Show full text]
  • Dugesiana, Año 22, No. 1, Enero-Junio 2015, Es Una Publicación Semestral, Editada Por La Universidad De Guadalajara, a Través
    Dugesiana, Año 22, No. 1, Enero-Junio 2015, es una publicación Semestral, editada por la Universidad de Guadalajara, a través del Centro de Estudios en Zoología, por el Centro Universitario de Ciencias Biológicas y Agropecuarias. Camino Ramón Padilla Sánchez # 2100, Nextipac, Zapopan, Jalisco, Tel. 37771150 ext. 33218, http://dugesiana.cucba.udg.mx, [email protected]. Editor responsable: José Luis Navarrete Heredia. Reserva de Derechos al Uso Exclusivo 04-2009-062310115100-203, ISSN: 2007-9133, otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número: Coordinación de Tecnologías para el Aprendizaje, Unidad Multimedia Instruccional, M.B.A. Oscar Carbajal Mariscal. Fecha de la última modificación 30 de Junio 2015, con un tiraje de un ejemplar. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación sin previa autorización de la Universidad de Guadalajara. Dugesiana 22(1): 43-50 Fecha de publicación: 30 de junio de 2015 ©Universidad de Guadalajara Revision of Moorella Cameron, 1913 (Hymenoptera: Encyrtidae) Revisión de Moorella Cameron, 1913 (Hymenoptera: Encyrtidae) Serguei Vladimirovich Triapitsyn1 and Vladimir Alexandrovich Trjapitzin2 1Entomology Research Museum, Department of Entomology, University of California, Riverside, California, 92521, USA. 2Do vostrebovania, Post Office 129344 (ulitsa Letchika Babushkina, 7), Moscow, Russia. ABSTRACT A diagnosis of the New World encyrtid wasp genus Moorella Cameron, 1913, a key to females of its six species, their synopsis, and descriptions and illustrations of M. alini Trjapitzin and Triapitsyn sp. n. (Brazil), M. irwini Triapitsyn and Trjapitzin sp.
    [Show full text]
  • Microbial (Per)Chlorate Reduction in Hot Subsurface Environments
    Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University Co-promotor Dr Bart P. Lomans Principal Scientist Shell Global Solutions International B.V., Rijswijk Other members Prof. Dr Willem J.H. van Berkel, Wageningen University Prof. Dr Mike S.M. Jetten, Radboud University Nijmegen Prof. Dr Ian Head, Newcastle University, UK Dr Timo J. Heimovaara, Delft University of Technology This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE) Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis submitted in fulfi lment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnifi cus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 17 October 2014 at 4 p.m. in the Aula. Martin G. Liebensteiner Microbial (Per)chlorate Reduction in Hot Subsurface Environments 172 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN 978-94-6257-125-9 TABLE OF CONTENTS Chapter 1 General introduction and thesis outline 7 Chapter 2 Microbial redox processes in deep subsurface environments 23 and the potential application of (per)chlorate in oil reservoirs Chapter 3 (Per)chlorate reduction by the hyperthermophilic
    [Show full text]
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community
    A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Evaluating the Probability of CRISPR-Based Gene Drive Contaminating Another Species
    bioRxiv preprint doi: https://doi.org/10.1101/776609; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Evaluating the Probability of CRISPR-based Gene Drive Contaminating Another Species 1 2 3 4 Virginie Courtier-Orgogozo ,​ Antoine Danchin ,​ Pierre-Henri Gouyon ​ and Christophe Boëte ​ ​ ​ ​ 1 I​ nstitut Jacques Monod, CNRS, UMR 7592, Université de Paris, Paris, France 2 I​ nstitut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris Descartes, Paris, France 3 I​ nstitut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France 4 I​ SEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France Abstract The probability D that a given CRISPR-based gene drive element contaminates another, non-target species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = (hyb+transf).express.cut.flank.immune.nonextinct with ​ ​ hyb = probability of hybridization between the target species and a non-target species ​ transf = probability of horizontal transfer of a piece of DNA containing the gene drive ​ cassette from the target species to a non-target species (with no hybridization) express = probability that the Cas9 and guide RNA genes are expressed ​ ​ ​ cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the ​ new host flank = probability that the gene drive cassette inserts at the cut site ​ immune = probability that the immune system does not reject Cas9-expressing cells ​ ​ ​ nonextinct = probability of invasion of the drive within the population ​ We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans.
    [Show full text]
  • Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
    SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]