Microbial (Per)Chlorate Reduction in Hot Subsurface Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Enzymes and Electron Transport in Microbial Chlorate Respiration
Faculty of Technology and Science Chemistry Jan Bohlin Enzymes and electron transport in microbial chlorate respiration DISSERTATION Karlstad University Studies 2008:36 Jan Bohlin Enzymes and electron transport in microbial chlorate respiration Karlstad University Studies 2008:36 Jan Bohlin. Enzymes and electron transport in microbial chlorate respiration DISSERTATION Karlstad University Studies 2008:36 ISSN 1403-8099 ISBN 978-91-7063-196-2 © The Author Distribution: Faculty of Technology and Science Chemistry 651 88 Karlstad 054-700 10 00 www.kau.se Printed at: Universitetstryckeriet, Karlstad 2008 Abstract Microbial chlorate respiration plays an important role in the turnover of oxochlorates in nature and in industrial waste management. This thesis deals with the characterization of the molecular components of chlorate respiration in Ideonella dechloratans. Chlorate respiration utilizes two soluble periplasmic enzymes, chlorate reductase and chlorite dismutase, to convert chlorate to chloride and oxygen. The genes encoding the enzymes participating in the chlorate degradation have been sequenced, and are found in close proximity, forming a gene cluster for chlorate metabolism. This work also includes the successful recombinant expression of three genes from Ideonella dechloratans. Two of the gene products, chlorite dismutase and the C subunit of chlorate reductase, participate in the chlorate respiration. The third gene, which is found close to the gene cluster for chlorate metabolism, encodes a soluble c-type cytochrome. The localization of the gene suggests the corresponding protein as a candidate for a role as electron donor to chlorate reductase. Also, the role of soluble periplasmic c cytochromes of Ideonella dechloratans in chlorate respiration was studied. At least one of the soluble c cytochromes was found capable of serving as electron donor for chlorate reduction. -
Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Pseudomonas Stutzeri Biology Of
Biology of Pseudomonas stutzeri Jorge Lalucat, Antoni Bennasar, Rafael Bosch, Elena García-Valdés and Norberto J. Palleroni Microbiol. Mol. Biol. Rev. 2006, 70(2):510. DOI: 10.1128/MMBR.00047-05. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/70/2/510 These include: http://mmbr.asm.org/ REFERENCES This article cites 395 articles, 145 of which can be accessed free at: http://mmbr.asm.org/content/70/2/510#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on January 28, 2014 by Red de Bibliotecas del CSIC Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2006, p. 510–547 Vol. 70, No. 2 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.00047-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Biology of Pseudomonas stutzeri Jorge Lalucat,1,2* Antoni Bennasar,1 Rafael Bosch,1 Elena Garcı´a-Valde´s,1,2 and Norberto J. Palleroni3 Departament de Biologia, Microbiologia, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain1; Institut Mediterrani d’Estudis Avanc¸ats (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain2; and Department of Biochemistry and Microbiology, Rutgers University, Cook Campus, 3 New Brunswick, New Jersey 08901-8520 Downloaded from INTRODUCTION .......................................................................................................................................................511 -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Arsenic Transformations
Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations Nathaniel R. Glassera, Paul H. Oyalab, Thomas H. Osbornec, Joanne M. Santinic, and Dianne K. Newmana,d,1 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; bDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; cInstitute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; and dDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Joan Selverstone Valentine, University of California, Los Angeles, CA, and approved July 13, 2018 (received for review May 9, 2018) Arsenate respiration by bacteria was discovered over two decades A microbe’s capacity for arsenate respiration corresponds ago and is catalyzed by diverse organisms using the well-conserved with the genes encoding the arsenate respiratory reductase (Arr) Arr enzyme complex. Until now, the mechanisms underpinning this complex, present in phylogenetically diverse organisms, includ- metabolism have been relatively opaque. Here, we report the struc- ing Gram-negative and Gram-positive bacteria (13). The ture of an Arr complex (solved by X-ray crystallography to 1.6-Å Arr complex is a member of the DMSO reductase family of resolution), which was enabled by an improved Arr expression molybdoenzymes and comprises two proteins, a large subunit method in the genetically tractable arsenate respirer Shewanella ArrA and a smaller subunit ArrB (13, 14). The ArrA subunit is sp. ANA-3. We also obtained structures bound with the substrate predicted to contain a Mo atom coordinated by a pyranopterin arsenate (1.8 Å), the product arsenite (1.8 Å), and the natural in- guanine dinucleotide cofactor (Mo-bisPGD), as well as a single hibitor phosphate (1.7 Å). -
Peak Antibody Name Immunogen
Positive in Supp. Peak Antibody name Immunogen/ Antigen type Source/Strain Phylum Group/Cluster this study References 1 A139 Sonicated cells Leptospirillum ferroxidans Nitrospirae Fe-S oxidizers cultures [1] 2 IVE3C_182 Intact cells Acidithiobacillus ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 3 A183 Sonicated cells A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 4 A184 Intact cells A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 5 A186 Intact cells L. ferroxidans Nitrospirae Fe-S oxidizers cultures + [1] 6 IVE1BF Biofilm L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 7 IVE1S100 Soluble cellular fraction (SB-S100) L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 8 IVE1C2 Pellet insoluble cellular fraction L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 9 IVE2S1 Supernatant NtD (Leptospirillum ferrifilum) Nitrospirae Fe-S oxidizers cultures + [2] 10 IVE3C1 Celulas Intactas Acidithiobacillus caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 11 IVE3S100 Soluble cellular fraction (SB-100) A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 12 IVE4C1 Intact cells Acidithiobacillus thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 13 IVE4C2 Pellet S100 A. thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 14 IVE4S100 Soluble cellular fraction (SB-100) A. thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 15 IVE5C1 Intact cells Acidithiobacillus albertensis Gammaproteobacteria Fe-S oxidizers cultures + [2] 16 IVE6C1 Intact cells A. caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 17 IVE6C2 Pellet S100 A. caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 18 IVE6S100 Soluble cellular fraction (SB-100) A. caldus Gammaproteobacteria Fe-S oxidizers cultures [2] 19 IVE7C1 Intact cells Halothiobacillus neapolitanus Gammaproteobacteria Fe-S oxidizers cultures + [3] 20 IVE8C1 Intact cells Acidimicrobium ferrooxidans Actinobacteria Fe-S oxidizers cultures + [3] 21 IVE9C1 Intact cells L. -
Genome-Resolved Metagenomics Identiies Genetic Mobility, Metabolic
The ISME Journal (2018) 12:1568–1581 https://doi.org/10.1038/s41396-018-0081-5 ARTICLE Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate- reducing communities 1 1 1,2 1 1 Tyler P. Barnum ● Israel A. Figueroa ● Charlotte I. Carlström ● Lauren N. Lucas ● Anna L. Engelbrektson ● John D. Coates1 Received: 19 October 2017 / Revised: 9 January 2018 / Accepted: 18 January 2018 / Published online: 23 February 2018 © International Society for Microbial Ecology 2018 Abstract Dissimilatory perchlorate reduction is an anaerobic respiratory pathway that in communities might be influenced by metabolic interactions. Because the genes for perchlorate reduction are horizontally transferred, previous studies have been unable to identify uncultivated perchlorate-reducing populations. Here we recovered metagenome-assembled genomes from perchlorate-reducing sediment enrichments and employed a manual scaffolding approach to reconstruct gene clusters for perchlorate reduction found within mobile genetic elements. De novo assembly and binning of four enriched communities 1234567890();,: yielded 48 total draft genomes. In addition to canonical perchlorate reduction gene clusters and taxa, a new type of gene cluster with an alternative perchlorate reductase was identified. Phylogenetic analysis indicated past exchange between these gene clusters, and the presence of plasmids with either gene cluster shows that the potential for gene transfer via plasmid persisted throughout enrichment. However, a majority of genomes in each community lacked perchlorate reduction genes. Putative chlorate-reducing or sulfur-reducing populations were dominant in most communities, supporting the hypothesis that metabolic interactions might result from perchlorate reduction intermediates and byproducts. Other populations included a novel phylum-level lineage (Ca. -
Microbial Diversity of Soda Lake Habitats
Microbial Diversity of Soda Lake Habitats Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Susanne Baumgarte aus Fritzlar 1. Referent: Prof. Dr. K. N. Timmis 2. Referent: Prof. Dr. E. Stackebrandt eingereicht am: 26.08.2002 mündliche Prüfung (Disputation) am: 10.01.2003 2003 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Baumgarte, S., Moore, E. R. & Tindall, B. J. (2001). Re-examining the 16S rDNA sequence of Halomonas salina. International Journal of Systematic and Evolutionary Microbiology 51: 51-53. Tagungsbeiträge Baumgarte, S., Mau, M., Bennasar, A., Moore, E. R., Tindall, B. J. & Timmis, K. N. (1999). Archaeal diversity in soda lake habitats. (Vortrag). Jahrestagung der VAAM, Göttingen. Baumgarte, S., Tindall, B. J., Mau, M., Bennasar, A., Timmis, K. N. & Moore, E. R. (1998). Bacterial and archaeal diversity in an African soda lake. (Poster). Körber Symposium on Molecular and Microsensor Studies of Microbial Communities, Bremen. II Contents 1. Introduction............................................................................................................... 1 1.1. The soda lake environment ................................................................................. -
Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof. -
Joana Isabel Ferreira Alves Sion
Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves sion Microbiology of thermophilic anaerobic syngas conversion hermophilic anaerobic syngas conver Microbiology of t es a Alv eir err Joana Isabel F 3 1 UMinho|20 Julho de 2013 Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves Microbiology of thermophilic anaerobic syngas conversion Tese de Doutoramento em Engenharia Química e Biológica Trabalho efectuado sob a orientação da Doutora Diana Zita Machado de Sousa da Doutora Maria Madalena dos Santos Alves e da Doutora Caroline M Plugge Julho de 2013 i Autor: Joana Isabel Ferreira Alves E-mail: [email protected] Telf.: +351 253 604 400 Cart~aocidad~ao: 12071827 T´ıtuloda tese: Microbiology of thermophilic anaerobic syngas conversion Microbiologia da convers~aoanaer´obiade g´asde s´ıntese em condi¸c~oestermof´ılicas Orientadores: Doutora Diana Zita Machado de Sousa Doutora Maria Madalena dos Santos Alves Doutora Caroline M Plugge Ano de conclus~ao: 2013 Doutoramento em Engenharia Qu´ımicae Biol´ogica E´ AUTORIZADA A REPRODUC¸ AO~ INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE INVESTIGAC¸ AO,~ MEDIANTE AUTORIZAC¸ AO~ ESCRITA DO INTERES- SADO, QUE A TAL SE COMPROMETE. Universidade do Minho, 19 de Julho de 2013. Joana Isabel Ferreira Alves - July 2013 Acknowledgments E´ o momento de agradecer a todos os que, de uma forma ou de outra, contribu´ırampara o sucesso do meu trabalho e me ajudaram ao longo dos ´ultimos4 anos. Assim, agrade¸coem primeiro lugar `asminhas orientadoras Diana Sousa, Madalena Alves e Caroline Plugge, por todo o seu trabalho de supervis~aoe orienta¸c~aocient´ıficae por tudo o que me ensinaram.