NEW HORIZONS in GEOMETRY 2010 Mathematics Subject Classification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plotting Graphs of Parametric Equations
Parametric Curve Plotter This Java Applet plots the graph of various primary curves described by parametric equations, and the graphs of some of the auxiliary curves associ- ated with the primary curves, such as the evolute, involute, parallel, pedal, and reciprocal curves. It has been tested on Netscape 3.0, 4.04, and 4.05, Internet Explorer 4.04, and on the Hot Java browser. It has not yet been run through the official Java compilers from Sun, but this is imminent. It seems to work best on Netscape 4.04. There are problems with Netscape 4.05 and it should be avoided until fixed. The applet was developed on a 200 MHz Pentium MMX system at 1024×768 resolution. (Cost: $4000 in March, 1997. Replacement cost: $695 in June, 1998, if you can find one this slow on sale!) For various reasons, it runs extremely slowly on Macintoshes, and slowly on Sun Sparc stations. The curves should move as quickly as Roadrunner cartoons: for a benchmark, check out the circular trigonometric diagrams on my Java page. This applet was mainly done as an exercise in Java programming leading up to more serious interactive animations in three-dimensional graphics, so no attempt was made to be comprehensive. Those who wish to see much more comprehensive sets of curves should look at: http : ==www − groups:dcs:st − and:ac:uk= ∼ history=Java= http : ==www:best:com= ∼ xah=SpecialP laneCurve dir=specialP laneCurves:html http : ==www:astro:virginia:edu= ∼ eww6n=math=math0:html Disclaimer: Like all computer graphics systems used to illustrate mathematical con- cepts, it cannot be error-free. -
Differential Geometry
Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2. -
MATH 4030 Problem Set 11 Due Date: Sep 19, 2019 Reading
MATH 4030 Problem Set 11 Due date: Sep 19, 2019 Reading assignment: Preliminary materials, and do Carmo's Section 1.2, 1.3, 1.5 Problems: (Those marked with y are optional.) 1. Compute the Frenet frame fT; N; Bg, curvature κ, and torsion τ of the space curves below (Note that some of the curves may not be parametrized by arc length!): (a) α(s) = 1 (1 + s)3=2; 1 (1 − s)3=2; p1 s , s 2 (−1; 1) 3 3 2 p p (b) α(t) = 1 + t2; t; log(t + 1 + t2) , t 2 R 2. Let α(t) = (t; f(t)), t 2 [a; b], be a parametrization of the graph of a smooth function f :[a; b] ! R. (a) Prove that α is a regular plane curve. R b p 0 2 (b) Show that the arc length of α from t = a to t = b is given by a 1 + (f (x)) dx. (c) Prove that the signed curvature k of the plane curve α is given by f 00(t) k(t) = : [1 + (f 0(t))2]3=2 3. Consider the catenary parametrized by α(t) = (t; cosh t), t 2 [0; b] for some b > 0, (a) Show that the arc length of α(t), t 2 [0; b], is given by sinh b. (b) Reparametrize α(t) by arc length β(s), where s 2 [0; s0]. Find s0. (c) Find the signed curvature kβ of the catenary using the arc length parametrization β(s). 4. Consider the tractrix parametrized by α(t) = (cos t + log tan(t=2); sin t), t 2 [π=2; π], (a) Write down the expression of the arc length of α(t), t 2 [π=2; π=2 + s] for any given s 2 (0; π=2). -
Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-Space E3
Fundamentals of Contemporary Mathematical Sciences (2020) 1(2) 63 { 70 Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-space E3 Abdullah Yıldırım 1,∗ Feryat Kaya 2 1 Harran University, Faculty of Arts and Sciences, Department of Mathematics S¸anlıurfa, T¨urkiye 2 S¸ehit Abdulkadir O˘guzAnatolian Imam Hatip High School S¸anlıurfa, T¨urkiye, [email protected] Received: 29 February 2020 Accepted: 29 June 2020 Abstract: In this study, evolute-involute curves are researched. Characterization of evolute-involute curves lying on the surface are examined according to Darboux frame and some curves are obtained. Keywords: Curve, surface, geodesic, curvature, frame. 1. Introduction The interest of special curves has increased recently. Some of these are associated curves. They are curves where one of the Frenet vectors at opposite points is linearly dependent to the other curve. One of the best examples of these curves is the evolute-involute partner curves. An involute thought known to have been used in his optical work came up in 1658 by C. Huygens. C. Huygens discovered involute curves while trying to make more accurate measurement studies [5]. Many researches have been conducted about evolute-involute partner curves. Some of them conducted recently are Bilici and C¸alı¸skan [4], Ozyılmaz¨ and Yılmaz [9], As and Sarıo˘glugil[2]. Bekta¸sand Y¨uceconsider the notion of the involute-evolute curves lying on the surfaces for a special situation. They determine the special involute-evolute partner D−curves in E3: By using the Darboux frame of the curves they obtain the necessary and sufficient conditions between κg , ∗ − ∗ ∗ τg; κn and κn for a curve to be the special involute partner D curve. -
Plotting the Spirograph Equations with Gnuplot
Plotting the spirograph equations with gnuplot V´ıctor Lua˜na∗ Universidad de Oviedo, Departamento de Qu´ımica F´ısica y Anal´ıtica, E-33006-Oviedo, Spain. (Dated: October 15, 2006) gnuplot1 internal programming capabilities are used to plot the continuous and segmented ver- sions of the spirograph equations. The segmented version, in particular, stretches the program model and requires the emmulation of internal loops and conditional sentences. As a final exercise we develop an extensible minilanguage, mixing gawk and gnuplot programming, that lets the user combine any number of generalized spirographic patterns in a design. Article published on Linux Gazette, November 2006 (#132) I. INTRODUCTION S magine the movement of a small circle that rolls, with- ¢ O ϕ Iout slipping, on the inside of a rigid circle. Imagine now T ¢ 0 ¢ P ¢ that the small circle has an arm, rigidly atached, with a plotting pen fixed at some point. That is a recipe for β drawing the hypotrochoid,2 a member of a large family of curves including epitrochoids (the moving circle rolls on the outside of the fixed one), cycloids (the pen is on ϕ Q ¡ ¡ ¡ the edge of the rolling circle), and roulettes (several forms ¢ rolling on many different types of curves) in general. O The concept of wheels rolling on wheels can, in fact, be generalized to any number of embedded elements. Com- plex lathe engines, known as Guilloch´e machines, have R been used since the XVII or XVIII century for engrav- ing with beautiful designs watches, jewels, and other fine r p craftsmanships. Many sources attribute to Abraham- Louis Breguet the first use in 1786 of Gilloch´eengravings on a watch,3 but the technique was already at use on jew- elry. -
Computer-Aided Design and Kinematic Simulation of Huygens's
applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock. -
Around and Around ______
Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular. -
Tractor Trailer Cornering
TRACTOR TRAILER CORNERING by RAMGOPAL BATTU B. S. , Osmania University, 1963 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Mechanical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1965 Approved by: Major Professor %6 ii TABLE OF CONTENTS NOMENCLATURE lii INTRODUCTION 1 DESCRIPTION OF CORNERING PROBLEM 2 DERIVATION OF EQUATIONS FOR FIRST PORTION OF TRACTRIX ... 4 EQUATIONS FOR SECOND PORTION OF TRACTRIX 11 PRESENTATION OF RESULTS 15 NUMERICAL RESULTS l8 DISCUSSION OF RESULTS 30 CONCLUSIONS 31 ACKNOWLEDGMENT 32 REFERENCES & APPENDIX 34 A. Listing of Fortran Program to solve for the distance between the tractrix curve and the leading curve. Ill NOMENCLATURE R Radius Of path of fifth wheel Ft a x-Co-ordinate of center of curvature Ft in x-y plane b y-Co-ordinate of center of curvature Ft in x-y plane x x-Co-ordinate of path of Trailer in Ft x-y plane Ft y y-Co-ordinate of path of Trailer in x-y plane K x-Co-ordinate of path of Fifth wheel Ft in x-y plane Ft f) y-Co-ordinate of path of Fifth wheel in x-y plane Y Angle indicated in Figure 2 Degrees 9 Angle indicated in Figure 2 Degrees L Length of Trailer Ft V Distance between "the tractrix and the leading curve Ft iv LIST OF FIGURES PAGE FIGURE 2 1 SCHEMATIC OF GENERAL TRACT RIX 2 SCHEMATIC OF A 90° CIRCULAR TURN 2 11 3 TRACTRIX OF A STRAIGHT LINE . 4 TOTAL TRACTRIX INCLUDING THE STRAIGHT LINE MOTION OF THE HITCH POINT 12 5 DIAGRAM SHOWING PARAMETERS USED IN PRESENTING RESULTS 14 6 DISTANCE BETWEEN THE TRACTRIX AND THE LEADING CURVE 16 7 MAXIMUM DIMENSIONLESS DISTANCE V/L VERSUS R/L . -
Variation Analysis of Involute Spline Tooth Contact
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2006-02-22 Variation Analysis of Involute Spline Tooth Contact Brian J. De Caires Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation De Caires, Brian J., "Variation Analysis of Involute Spline Tooth Contact" (2006). Theses and Dissertations. 375. https://scholarsarchive.byu.edu/etd/375 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. VARIATION ANALYSIS OF INVOLUTE SPLINE TOOTH CONTACT By Brian J. K. DeCaires A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Mechanical Engineering Brigham Young University April 2006 Copyright © 2006 Brian J. K. DeCaires All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Brian J. K. DeCaires This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ___________________________ ______________________________________ Date Kenneth W. Chase, Chair ___________________________ ______________________________________ Date Carl D. Sorensen ___________________________ -
Raphael, the Catenary-Tractrix Principle of the Transfiguration
1 of 13 From the desk of Pierre Beaudry RAPHAEL SANZIO: THE CATENARY/TRACTRIX PRINCIPLE OF THE TRANSFIGURATION by Pierre Beaudry 7/21/2009 Raphael’s Transfiguration contains a very disturbing discontinuity representing two different and opposite processes that have baffled critics and admirers alike for centuries. The perplexity of the spectator before this painting lies in the fact that the moment depicted in the upper part of the painting, the actual transfiguration of Christ, does not occur at the same time as the tragic event of the curing of the epileptic boy, in the lower part of the fresco, so that the two scenes appear to be completely foreign, separate, and even opposite subjects. This first impression is neurotic, incomplete, and misleading merely because a true cognitive connection of unity has not been discovered between the two events. On the other hand, if one looks at the whole scene as a metaphor of the creative process, the perplexity is dissipated, and the unity of effect is reestablished. In other words, if the Transfiguration is considered as the reflection of a catenary/tractrix envelopment by inversion of two different times, mortality and immortality, and two opposite movements, local and infinite, woven into an extraordinary singular unity of effect, the enigma of Raphael is resolved. Here, Leonardo da Vinci’s conception of the catenary/tractrix function shows how the human mind works at the same time that one discovers the process of its discovery in a Cusa contracted infinite. That is the central irony of Raphael’s Transfiguration, and the object of this report: to show how Raphael treated the external appearance of the subject in such a manner that it corresponded to the internal nature of the event. -
Interactive Involute Gear Analysis and Tooth Profile Generation Using Working Model 2D
AC 2008-1325: INTERACTIVE INVOLUTE GEAR ANALYSIS AND TOOTH PROFILE GENERATION USING WORKING MODEL 2D Petru-Aurelian Simionescu, University of Alabama at Birmingham Petru-Aurelian Simionescu is currently an Assistant Professor of Mechanical Engineering at The University of Alabama at Birmingham. His teaching and research interests are in the areas of Dynamics, Vibrations, Optimal design of mechanical systems, Mechanisms and Robotics, CAD and Computer Graphics. Page 13.781.1 Page © American Society for Engineering Education, 2008 Interactive Involute Gear Analysis and Tooth Profile Generation using Working Model 2D Abstract Working Model 2D (WM 2D) is a powerful, easy to use planar multibody software that has been adopted by many instructors teaching Statics, Dynamics, Mechanisms, Machine Design, as well as by practicing engineers. Its programming and import-export capabilities facilitate simulating the motion of complex shape bodies subject to constraints. In this paper a number of WM 2D applications will be described that allow students to understand the basics properties of involute- gears and how they are manufactured. Other applications allow students to study the kinematics of planetary gears trains, which is known to be less intuitive than that of fix-axle transmissions. Introduction There are numerous reports on the use of Working Model 2D in teaching Mechanical Engineering disciplines, including Statics, Dynamics, Mechanisms, Vibrations, Controls and Machine Design1-9. Working Model 2D (WM 2D), currently available form Design Simulation Technologies10, is a planar multibody software, capable of performing kinematic and dynamic simulation of interconnected bodies subject to a variety of constraints. The versatility of the software is given by its geometry and data import/export capabilities, and scripting through formula and WM Basic language system. -
Unity Via Diversity 81
Unity via diversity 81 Unity via diversity Unity via diversity is a concept whose main idea is that every entity could be examined by different point of views. Many sources name this conception as interdisciplinarity . The mystery of interdisciplinarity is revealed when people realize that there is only one discipline! The division into multiple disciplines (or subjects) is just the human way to divide-and-understand Nature. Demonstrations of how informatics links real life and mathematics can be found everywhere. Let’s start with the bicycle – a well-know object liked by most students. Bicycles have light reflectors for safety reasons. Some of the reflectors are attached sideway on the wheels. Wheel reflector Reflectors notify approaching vehicles that there is a bicycle moving along or across the road. Even if the conditions prevent the driver from seeing the bicycle, the reflector is a sufficient indicator if the bicycle is moving or not, is close or far, is along the way or across it. Curve of the reflector of a rolling wheel When lit during the night, the wheel’s side reflectors create a beautiful luminous curve – a trochoid . 82 Appendix to Chapter 5 A trochoid curve is the locus of a fixed point as a circle rolls without slipping along a straight line. Depending on the position of the point a trochoid could be further classified as curtate cycloid (the point is internal to the circle), cycloid (the point is on the circle), and prolate cycloid (the point is outside the circle). Cycloid, curtate cycloid and prolate cycloid An interesting activity during the study of trochoids is to draw them using software tools.