Selective Gene Dependencies in MYCN-Amplified Neuroblastoma Include the Core Transcriptional Regulatory Circuitry

Total Page:16

File Type:pdf, Size:1020Kb

Selective Gene Dependencies in MYCN-Amplified Neuroblastoma Include the Core Transcriptional Regulatory Circuitry Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Durbin, Adam D. et al. “Selective gene dependencies in MYCN- amplified neuroblastoma include the core transcriptional regulatory circuitry.” Nature genetics 50 (2018): 1240-1246 © 2018 The Author(s) As Published 10.1038/s41588-018-0191-z Publisher Springer Science and Business Media LLC Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/124922 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Published as: Nat Genet. 2018 September ; 50(9): 1240–1246. HHMI Author ManuscriptHHMI Author Manuscript HHMI Author Manuscript HHMI Author Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry Adam D. Durbin*,1,2, Mark W. Zimmerman*,1, Neekesh V. Dharia*,1,2,3, Brian J. Abraham4, Amanda Balboni Iniguez1,3, Nina Weichert-Leahey1, Shuning He1, John M. Krill-Burger3, David E. Root3, Francisca Vazquez3, Aviad Tsherniak3, William C. Hahn3,5, Todd R. Golub1,3, Richard A. Young4,6,†, A. Thomas Look1,2,†,‡, and Kimberly Stegmaier1,2,3,†,‡ 1Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215 2Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115 3The Broad Institute, Cambridge, MA, 02142 4Whitehead Institute for Biomedical Research, Cambridge, MA, 02142 5Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215 6Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142 Abstract Childhood high-risk neuroblastomas with MYCN gene amplification are difficult to treat effectively1. This has focused attention on tumor-specific gene dependencies that underlie tumorigenesis and thus provide valuable targets for the development of novel therapeutics. Using unbiased genome-scale CRISPR-Cas9 approaches to detect genes involved in tumor cell growth and survival2–6, we identified 147 candidate gene dependencies selective for MYCN-amplified neuroblastoma cell lines, compared to over 300 other human cancer cell lines. We then used genome-wide ChIP-seq analysis to demonstrate that a small number of essential transcription factors: MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2, are members of the transcriptional core regulatory circuitry (CRC) that maintains cell state in MYCN-amplified neuroblastoma. To disable the CRC, we tested a combination of BRD4 and CDK7 inhibitors, which act synergistically, in vitro and in vivo, with rapid downregulation of CRC transcription factor gene Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms †Corresponding Authors: Kimberly Stegmaier [email protected]; A. Thomas Look [email protected]; Richard A. Young [email protected]. *These authors contributed equally to the study. ‡These authors jointly supervised this work and represent co-principal investigators. Author Contributions: ADD, MWZ, NVD, KS, BJA, RAY and ATL conceived the study and designed the experiments. ADD and MWZ performed genomic meta-analyses, ChIP-seq, ATAC-seq, siRNA, low-throughput CRISPR-Cas9, pharmacologic and gene expression assays. NW and SH performed ChIP-seq and ATAC-seq experiments. ABI, ADD, NVD and KS performed and interpreted the drug activity and synergy studies. NVD, KS, JMK, FV, DER, AT, WCH and TRG performed and analyzed the genome-scale CRISPR-Cas9 screening experiments. NVD, BJA, and RAY performed computational analysis. ADD, MWZ, NVD, KS and ATL wrote the manuscript with input from all authors. Competing Interests: RAY is a founder and shareholder of Syros Pharmaceuticals, which is discovering and developing therapeutics directed at transcriptional pathways in cancer. KS and WCH consult for Novartis Pharmaceuticals as part of the Dana-Farber Cancer Institute/Novartis Drug Discovery Program. BJA is a shareholder of Syros Pharmaceuticals. No other potential conflicts of interest are declared. Durbin et al. Page 2 expression. This study defines a set of critical dependency genes in MYCN-amplified neuroblastoma that are essential for cell state and survival in this tumor. HHMI Author ManuscriptHHMI Author Manuscript HHMI Author We Manuscript HHMI Author conducted systematic genome-scale CRISPR-Cas9 screens in 341 human cancer cell lines, including nine neuroblastoma lines with MYCN-amplification7. Our cell line panel also included an additional two neuroblastoma cell lines, SKNFI and SKNAS, which do not harbor MYCN-amplification but do express high levels of MYCN or c-MYC, respectively8. We identified 147 candidate genes that were selectively essential to the growth and survival of MYCN-amplified neuroblastoma cell lines (Supplementary Table 1). The guide RNAs targeting these genes showed greater depletion in the nine MYCN-amplified neuroblastoma cell lines than in the other human cancer cell lines representing 26 tumor types. Classification of the 147 dependencies by gene ontology molecular function revealed a diverse set of genes encoding proteins in numerous functional categories (Fig. 1a)9,10, with overrepresentation of ontologies for nucleic acid binding (12%, p=8.48×10−3) and transcription factor activity or binding (20%, p=6.78×10−3). Many dependency genes have not been previously associated with the sympathoadrenal cell lineage. Others have been reported to be involved in neural crest cell specification and neuroblastoma pathogenesis1,11–20. This set of transcriptional regulatory genes is highly connected by putative protein-protein interactions in the STRING database21 (Fig. 1b). Representative dependency scores in MYCN-amplified neuroblastoma compared to other tumor cells are shown in Fig. 1c, d for the genes HAND2 and ISL1, and for a subset of other genes with nucleic acid binding and/or transcription factor activities in Supplementary Fig. 1. Our results show that many transcription factor genes with selective dependency in MYCN- amplified neuroblastoma cells also displayed dependency in the two MYCN non-amplified cell lines studied so far, although additional MYCN non-amplified lines will need to be studied before firm conclusions can be drawn. We next performed transient small-interfering RNA (siRNA) knockdown targeting mRNAs that encode five transcription factors dependencies (HAND2, ISL1, PHOX2B, GATA3 and TBX2) to independently verify that these genes represent dependencies in MYCN-amplified neuroblastoma cell lines. Depletion of expression of these genes resulted in suppression of colony formation and induction of apoptosis (Fig. 1e, f and Supplementary Figs. 2, 3). Thus, MYCN-amplified neuroblastoma cells rely on a discrete set of genes that are either unique to, or only minimally shared with, other tumor types. The gene dependencies we identified suggest that diverse sets of complex pathways are activated to support the viability of MYCN-amplified neuroblastoma. Given the overrepresentation of transcription factor and nucleic acid binding activities among the 147 gene dependencies (Fig. 1a), we hypothesized that these genes were specifically required for transcriptional regulation in neuroblastoma cells. Previous studies have demonstrated that lineage-specific differences in cell state during development are determined by tissue- specific core regulatory circuits (CRCs) that may be subverted to drive malignant transformation22,23. Core regulatory circuitry is formed by transcription factors assembled into positive, feed-forward autoregulatory loops that establish and maintain cell lineage and identity through their extended regulatory networks24,25. CRC transcription factor genes are typically marked by extensive stretches of acetylation at histone H3-lysine 27 (H3K27ac), a Nat Genet. Author manuscript; available in PMC 2019 February 22. Durbin et al. Page 3 genomic feature characteristic of high levels of gene expression, termed super-enhancers (SEs)26,27 (Fig. 2a). To investigate the relevance of a CRC framework to the dependency genes identified earlier, we performed chromatin-immunoprecipitation coupled to high- HHMI Author ManuscriptHHMI Author Manuscript HHMI Author throughput Manuscript HHMI Author sequencing (ChIP-seq) for H3K27ac in five MYCN-amplified neuroblastoma cell lines, revealing a shared set of 77 genes associated with SEs across all five cell lines (Fig. 2b and Supplementary Table 2). As observed in the selective dependencies, the SE- associated genes in MYCN-amplified neuroblastoma cells were overrepresented among ontologies9,10 including nucleic acid binding (21%, p=3.93×10−3) and transcription factor activity or binding (22%, p=4.29×10−8). Examples of the H3K27ac signals of highly ranked transcription factor genes are shown in Fig. 2c and Supplementary Fig. 4. When these 77 SE-associated genes were compared with the 147 selective dependencies in MYCN-amplified neuroblastoma identified by the CRISPR-Cas9 screen, 11 of the SE- associated genes were selective dependencies and 10 of 11 (91%) of these genes encoded transcription factors (Fig. 2d). This represents 11 of 69 SE-associated genes targeted by specific guide RNAs (15.9%, p=1.11×10−10
Recommended publications
  • Uterine Double-Conditional Inactivation of Smad2 and Smad3 in Mice Causes Endometrial Dysregulation, Infertility, and Uterine Cancer
    Uterine double-conditional inactivation of Smad2 and Smad3 in mice causes endometrial dysregulation, infertility, and uterine cancer Maya Krisemana,b, Diana Monsivaisa,c, Julio Agnoa, Ramya P. Masanda, Chad J. Creightond,e, and Martin M. Matzuka,c,f,g,h,1 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bReproductive Endocrinology and Infertility, Baylor College of Medicine/Texas Children’s Hospital Women’s Pavilion, Houston, TX 77030; cCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; dDepartment of Medicine, Baylor College of Medicine, Houston, TX 77030; eDan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030; fDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; gDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and hDepartment of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M. Matzuk, December 6, 2018 (sent for review April 30, 2018; reviewed by Milan K. Bagchi and Thomas E. Spencer) SMAD2 and SMAD3 are downstream proteins in the transforming in endometrial function. Notably, members of the transforming growth factor-β (TGF β) signaling pathway that translocate signals growth factor β (TGF β) family are involved in many cellular from the cell membrane to the nucleus, bind DNA, and control the processes and serve as principal regulators of numerous biological expression of target genes. While SMAD2/3 have important roles functions, including female reproduction. Previous studies have in the ovary, we do not fully understand the roles of SMAD2/3 in shown the TGF β family to have key roles in ovarian folliculo- the uterus and their implications in the reproductive system.
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • SOX11 Interactome Analysis: Implication in Transcriptional Control and Neurogenesis
    SOX11 interactome analysis: Implication in transcriptional control and neurogenesis Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Birgit Heim, geb.Kick aus Augsburg Tübingen 2014 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 12.02.2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Olaf Rieß 2. Berichterstatter: Prof. Dr. Marius Ueffing Für meine Familie TABLE OF CONTENTS Table of contents Summary ................................................................................................................ 5 Zusammenfassung ............................................................................................... 7 1. Introduction ...................................................................................... 9 1.1. Adult neurogenesis .................................................................................... 9 1.1.1. Adult neural stem cells and neuronal precursor cells ............................ 9 1.1.2. Neurogenic niches .............................................................................. 11 1.1.3. Regulation of adult neurogenesis ........................................................ 12 1.1.3.1. Extrinsic mechanisms .................................................................. 12 1.1.3.2. Intrinsic mechanisms ..................................................................
    [Show full text]
  • Gene Amplification
    Europaisches Patentamt J) European Patent Office © Publication number: 0 319 206 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © C12N Application number: 88311183.3 © int. ci."; 15/00 , C12N 5/00 © Date of filing: 25.11.88 © Priority: 30.11.87 US 126436 © Applicant: CODON CORPORATION 213 East Grand Avenue © Date of publication of application: South San Francisco California 94025(CA) 07.06.89 Bulletin 89/23 © Inventor: Colby, Wendy W. © Designated Contracting States: 2018 Lyon Avenue AT BE CH DE FR GB IT LI LU NL SE Belmont California 94002(US) Inventor: Morser, Michael J. 3964 - 20th Street San Francisco California 94114(US) Inventor: Cashion, Linda M. 219 Kelton Avenue San Carlos California 94070(US) © Representative: Thomson, Paul Anthony et al Potts, Kerr & Co. 15, Hamilton Square Birkenhead Merseyside L41 6BR(GB) © Gene amplification. © Improved means are provided for obtaining enhanced production of proteins encoded by structural genes of interest in a host based on transfecting the host with an expression vector comprising a wild-type amplifiable gene and the predetermined structural gene. The host is typically not complemented by the amplifiable gene product. If desired, another selection marker may be utilized to select a desired population of cells prior to the amplification. CM < CO o CM G) i— CO o CL LLI <erox Copy Centre EP 0 319 206 A2 GENE AMPLIFICATION Field of the Invention This invention relates generally to improved recombinant DNA techniques and the increased expression 5 of mammalian polypeptides in genetically engineered eukaryotic cells. More specifically, the invention relates to improved methods of selecting transfected cells and further, to methods of gene amplification resulting in the expression of predetermined gene products at very high levels.
    [Show full text]
  • Prediction-Based Highly Sensitive CRISPR Off
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.31.889626; this version posted December 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Prediction-based highly sensitive CRISPR off- target validation using target-specific DNA enrichment Seung-Hun Kang1,6, Wi-jae Lee1,8, Ju-Hyun An1, Jong-Hee Lee2, Young-Hyun Kim2,3, Hanseop Kim1,7, Yeounsun Oh1,9, Young-Ho Park1, Yeung Bae Jin2, Bong-Hyun Jun8, Junho K Hur4,5,#, Sun-Uk Kim1,3,# and Seung Hwan Lee2,# 1Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea 2National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea 3Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea 4Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea 5Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 6Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 7School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea 8Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea 9Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea #Correspondence: [email protected], [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.31.889626; this version posted December 31, 2019.
    [Show full text]
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Phox2b and Motoneuronal Differentiation
    Development 127, 1349-1358 (2000) 1349 Printed in Great Britain © The Company of Biologists Limited 2000 DEV1515 Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b Alexandre Pattyn, Marie-Rose Hirsch, Christo Goridis and Jean-François Brunet* Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Univ Méditerranée/AP de Marseille, Luminy Case 907, 13288 Marseille Cedex 9, France *Author for correspondence (e-mail: [email protected]) Accepted 11 January; published on WWW 7 March 2000 SUMMARY Motor neurons are a widely studied model of vertebrate both the generic and subtype-specific programs of neurogenesis. They can be subdivided in somatic, branchial motoneuronal differentiation are disrupted at an early and visceral motor neurons. Recent studies on the stage. Most motor neuron precursors die inside the dorsoventral patterning of the rhombencephalon have neuroepithelium while those that emigrate to the mantle implicated the homeobox genes Pax6 and Nkx2.2 in the layer fail to switch on early postmitotic markers and to early divergence of the transcriptional programme of downregulate neuroepithelial markers. Thus, the loss of hindbrain somatic and visceral motor neuronal function of Phox2b in hindbrain motor neurons exemplifies differentiation. We provide genetic evidence that the a novel control point in the generation of CNS neurons. paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, Key words: Neurogenesis, Motor neuron, Homeobox gene, motor neurons in the hindbrain. In mice lacking Phox2b, Rhombencephalon, Phox2b, Mouse INTRODUCTION of sm neurons has been studied most extensively and some of the transcriptional cascades controlling their differentiation are The specification of neuronal subtype identity in the beginning to be understood.
    [Show full text]
  • The Evolving Genetic Landscape of Hirschprung Disease: an Update and Review
    Review Article Clinics in Surgery Published: 11 Oct, 2017 The Evolving Genetic Landscape of Hirschprung Disease: An Update and Review Amit Kumar Yadav* and Gaurav Chopra Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India Abstract Hirschsprung Disease (HD) is a developmental disorder characterized by the complete absence of ganglion cells in the distal gastrointestinal tract. It is the most common cause of functional intestinal obstruction in neonates and children. The aganglionosis is believed to be either due to failure of neural crest cells to migrate, proliferate, differentiate or survive during gut development in the embryonic stage. The incidence of HD is estimated at 1/5000 live births and shows a male predominance. It is usually sporadic, although it can be familial and may be inherited as autosomal dominant or autosomal recessive. In 70% of cases, HD occurs as an isolated trait and in the other 30% it is associated with other congenital malformation syndromes. HD has a complex multifactorial etiology, and genetic factors play a key role in its pathogenesis. Several gene loci appear to be involved. Many of these have been identified by conducting Genome Wide Association (GWAS) studies and recently by Next Generation Sequencing (NGS). These genes encode for receptors, ligands (especially those participating in the RET, EDNRB and Semaphorin signaling pathways), transcriptional factors (PHOX2B & SOX10). These genes are involved in the neural crest cell development and migration that give rise to ganglion cells. Overall, the RET proto-oncogene is considered the major disease causing gene in HD. A greater understanding of the genetic landscape of this disease might pave way for genetic counseling, prenatal and preimplantation diagnosis in the management of HD.
    [Show full text]
  • Co-Occupancy by Multiple Cardiac Transcription Factors Identifies
    Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart Aibin Hea,b,1, Sek Won Konga,b,c,1, Qing Maa,b, and William T. Pua,b,2 aDepartment of Cardiology and cChildren’s Hospital Informatics Program, Children’s Hospital Boston, Boston, MA 02115; and bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved February 23, 2011 (received for review November 12, 2010) Identification of genomic regions that control tissue-specific gene study of a handful of model genes (e.g., refs. 7–10), it has not been expression is currently problematic. ChIP and high-throughput se- evaluated using unbiased, genome-wide approaches. quencing (ChIP-seq) of enhancer-associated proteins such as p300 In this study, we used a modified ChIP-seq approach to define identifies some but not all enhancers active in a tissue. Here we genome wide the binding sites of these cardiac TFs (1). We show that co-occupancy of a chromatin region by multiple tran- provide unbiased support for collaborative TF interactions in scription factors (TFs) identifies a distinct set of enhancers. GATA- driving cardiac gene expression and use this principle to show that chromatin co-occupancy by multiple TFs identifies enhancers binding protein 4 (GATA4), NK2 transcription factor-related, lo- with cardiac activity in vivo. The majority of these multiple TF- cus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and “ binding loci (MTL) enhancers were distinct from p300-bound myocyte-enhancer factor 2A (MEF2A), here referred to as cardiac enhancers in location and functional properties.
    [Show full text]
  • Associated with Past Or Ongoing Infection with a Hepadnavirus (Hepatoceflular Carcinoma/N-Myc/Retroposon) CATHERINE TRANSY*, GENEVIEVE FOUREL*, WILLIAM S
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 3874-3878, May 1992 Biochemistry Frequent amplification of c-mnc in ground squirrel liver tumors associated with past or ongoing infection with a hepadnavirus (hepatoceflular carcinoma/N-myc/retroposon) CATHERINE TRANSY*, GENEVIEVE FOUREL*, WILLIAM S. ROBINSONt, PIERRE TIOLLAIS*, PATRICIA L. MARIONt, AND MARIE-ANNICK BUENDIA*t *Unit6 de Recombinaison et Expression Gdndtique, Institut National de la Santd et de la Recherche Mddicale U163, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, Cedex 15, France; and tDivision of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 Communicated by Andre Lwoff, January 23, 1992 (received for review November 5, 1991) ABSTRACT Persistent infection with hepatitis B virus HCC through distinct and perhaps cooperative mechanisms. (HBV) is a major cause of hepatoceliular carcinoma (HCC) in However, the cellular factors involved in virally induced humans. HCC has also been observed in animals chronically oncogenesis remain largely unknown. infected with two other hepadnaviruses: ground squirrel hep- In this regard, hepadnaviruses infecting lower animals, atitis virus (GSHV) and woodchuck hepatitis virus (WHV). A such as the woodchuck hepatitis virus (WHV) and the ground distinctive feature of WHV is the early onset of woodchuck squirrel hepatitis virus (GSHV), represent interesting mod- tumors, which may be correlated with a direct role of the virus els. Chronic infection with WHV has been found to be as an insertional mutagen of myc genes: c-myc, N-myc, and associated with a high incidence and a rapid onset of HCCs predominantly the woodchuck N-myc2 retroposon. In the in naturally infected woodchucks (11), and the oncogenic present study, we searched for integrated GSHV DNA and capacity of the virus has been further demonstrated in genetic alterations ofmyc genes in ground squirrel HCCs.
    [Show full text]