Defining the Transcriptomic Landscape of the Developing Enteric Nervous System and Its Cellular Environment Sweta Roy-Carson Iowa State University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Transcriptomic Landscape of the Developing Enteric Nervous System and Its Cellular Environment Sweta Roy-Carson Iowa State University, Sweta@Iastate.Edu Genetics, Development and Cell Biology Genetics, Development and Cell Biology Publications 2017 Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Sweta Roy-Carson Iowa State University, [email protected] Kevin Natukunda Iowa State University, [email protected] Hsien-chao Chou Iowa State University Narinder Pal Iowa State University Caitlin Farris Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/gdcb_las_pubs See next page for additional authors Part of the Cell and Developmental Biology Commons, and the Molecular Genetics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ gdcb_las_pubs/202. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Genetics, Development and Cell Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Genetics, Development and Cell Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Abstract Background: Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The og al of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. Results: Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP)w37]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP- negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. Conclusion: We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders. Keywords Enteric nervous system, Neural crest, Transcriptome, RNA-sequencing, Zebrafish, Hirschsprungs, phox2b Disciplines Cell and Developmental Biology | Genetics and Genomics | Molecular Genetics Comments This article is published as Roy-Carson, Sweta, Kevin Natukunda, Hsien-chao Chou, Narinder Pal, Caitlin Farris, Stephan Q. Schneider, and Julie A. Kuhlman. "Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment." BMC genomics 18 (2017): 290. doi: 10.1186/ s12864-017-3653-2. This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/gdcb_las_pubs/202 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. Authors Sweta Roy-Carson, Kevin Natukunda, Hsien-chao Chou, Narinder Pal, Caitlin Farris, Stephan Q. Schneider, and Julie A. Kuhlman This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/gdcb_las_pubs/202 Roy-Carson et al. BMC Genomics (2017) 18:290 DOI 10.1186/s12864-017-3653-2 RESEARCH ARTICLE Open Access Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Sweta Roy-Carson1, Kevin Natukunda1, Hsien-chao Chou1,2, Narinder Pal1,3, Caitlin Farris1,4, Stephan Q. Schneider1 and Julie A. Kuhlman1,5* Abstract Background: Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. Results: Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP)w37]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. Conclusion: We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders. Keywords: Enteric nervous system, Neural crest, Transcriptome, RNA-sequencing, Zebrafish, Hirschsprungs, phox2b * Correspondence: [email protected] 1Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA 5642 Science II, Iowa State University, Ames, IA 50011, USA Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Roy-Carson et al. BMC Genomics (2017) 18:290 Page 2 of 24 Background Adhesion molecule (L1CAM), Neurotrophin 3 (NTF3), The enteric nervous system (ENS), the largest division of Neuregulin 1 (NRG1), Neuregulin 3 (NRG3), Neurturin the peripheral nervous system (PNS), is composed of a (NRTN), Neurotrophic Receptor Tyrosine Kinase 3 network of neurons and glia that innervate the gastro- (NTRK3), PHOX2B, Prokineticin 2 (PROK2), Prokineticin intestinal tract [1]. The ENS functions within the gastro- Receptor 1 (PROKR1), Prokineticin Receptor 2 (PORKR2), intestinal tract to control motility for mixing and Persephin (PSPN), Semaphorin 3A (SEMA3A), Sema- moving food, absorption of nutrients, epithelial secre- phorin 3D (SEMA3D), SRY-Box 10 (SOX10), Transcription tions, and blood circulation [2]. It arises from a popula- Factor 4 (TCF4),
Recommended publications
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • SOX11 Interactome Analysis: Implication in Transcriptional Control and Neurogenesis
    SOX11 interactome analysis: Implication in transcriptional control and neurogenesis Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Birgit Heim, geb.Kick aus Augsburg Tübingen 2014 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 12.02.2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Olaf Rieß 2. Berichterstatter: Prof. Dr. Marius Ueffing Für meine Familie TABLE OF CONTENTS Table of contents Summary ................................................................................................................ 5 Zusammenfassung ............................................................................................... 7 1. Introduction ...................................................................................... 9 1.1. Adult neurogenesis .................................................................................... 9 1.1.1. Adult neural stem cells and neuronal precursor cells ............................ 9 1.1.2. Neurogenic niches .............................................................................. 11 1.1.3. Regulation of adult neurogenesis ........................................................ 12 1.1.3.1. Extrinsic mechanisms .................................................................. 12 1.1.3.2. Intrinsic mechanisms ..................................................................
    [Show full text]
  • Phox2b and Motoneuronal Differentiation
    Development 127, 1349-1358 (2000) 1349 Printed in Great Britain © The Company of Biologists Limited 2000 DEV1515 Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b Alexandre Pattyn, Marie-Rose Hirsch, Christo Goridis and Jean-François Brunet* Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Univ Méditerranée/AP de Marseille, Luminy Case 907, 13288 Marseille Cedex 9, France *Author for correspondence (e-mail: [email protected]) Accepted 11 January; published on WWW 7 March 2000 SUMMARY Motor neurons are a widely studied model of vertebrate both the generic and subtype-specific programs of neurogenesis. They can be subdivided in somatic, branchial motoneuronal differentiation are disrupted at an early and visceral motor neurons. Recent studies on the stage. Most motor neuron precursors die inside the dorsoventral patterning of the rhombencephalon have neuroepithelium while those that emigrate to the mantle implicated the homeobox genes Pax6 and Nkx2.2 in the layer fail to switch on early postmitotic markers and to early divergence of the transcriptional programme of downregulate neuroepithelial markers. Thus, the loss of hindbrain somatic and visceral motor neuronal function of Phox2b in hindbrain motor neurons exemplifies differentiation. We provide genetic evidence that the a novel control point in the generation of CNS neurons. paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, Key words: Neurogenesis, Motor neuron, Homeobox gene, motor neurons in the hindbrain. In mice lacking Phox2b, Rhombencephalon, Phox2b, Mouse INTRODUCTION of sm neurons has been studied most extensively and some of the transcriptional cascades controlling their differentiation are The specification of neuronal subtype identity in the beginning to be understood.
    [Show full text]
  • The Evolving Genetic Landscape of Hirschprung Disease: an Update and Review
    Review Article Clinics in Surgery Published: 11 Oct, 2017 The Evolving Genetic Landscape of Hirschprung Disease: An Update and Review Amit Kumar Yadav* and Gaurav Chopra Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India Abstract Hirschsprung Disease (HD) is a developmental disorder characterized by the complete absence of ganglion cells in the distal gastrointestinal tract. It is the most common cause of functional intestinal obstruction in neonates and children. The aganglionosis is believed to be either due to failure of neural crest cells to migrate, proliferate, differentiate or survive during gut development in the embryonic stage. The incidence of HD is estimated at 1/5000 live births and shows a male predominance. It is usually sporadic, although it can be familial and may be inherited as autosomal dominant or autosomal recessive. In 70% of cases, HD occurs as an isolated trait and in the other 30% it is associated with other congenital malformation syndromes. HD has a complex multifactorial etiology, and genetic factors play a key role in its pathogenesis. Several gene loci appear to be involved. Many of these have been identified by conducting Genome Wide Association (GWAS) studies and recently by Next Generation Sequencing (NGS). These genes encode for receptors, ligands (especially those participating in the RET, EDNRB and Semaphorin signaling pathways), transcriptional factors (PHOX2B & SOX10). These genes are involved in the neural crest cell development and migration that give rise to ganglion cells. Overall, the RET proto-oncogene is considered the major disease causing gene in HD. A greater understanding of the genetic landscape of this disease might pave way for genetic counseling, prenatal and preimplantation diagnosis in the management of HD.
    [Show full text]
  • The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1
    The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Quan, Jinhua, Guillaume Adelmant, Jarrod A. Marto, A. Thomas Look, and Timur Yusufzai. 2014. “The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1.” PLoS ONE 9 (9): e108066. doi:10.1371/journal.pone.0108066. http:// dx.doi.org/10.1371/journal.pone.0108066. Published Version doi:10.1371/journal.pone.0108066 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347631 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 Jinhua Quan1,2, Guillaume Adelmant2,3, Jarrod A. Marto2,3, A. Thomas Look4, Timur Yusufzai1,2* 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Blais Proteomics Center, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 4 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America Abstract Loss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown.
    [Show full text]
  • Definition and Characterization of a Region of 1P36.3 Consistently
    Oncogene (2005) 24, 2684–2694 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma Peter S White*,1,2, Patricia M Thompson1, Takahiro Gotoh1, Erin R Okawa1, Jun Igarashi1, Marleen Kok1, Cynthia Winter1, Simon G Gregory3, MichaelD Hogarty 1,2, John M Maris1,2,4 and Garrett M Brodeur1,2 1Division of Oncology, The Children’s Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, PA 19104, USA; 2Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; 3Center for Human Genetics, Duke University School of Medicine, Durham, NC 27710, USA; 4Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Substantial genomic and functional evidence from primary Introduction tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of Neuroblastoma is a common pediatric malignancy of human neuroblastomas, suggesting that this region contains the peripheralsympathetic nervous system. Despite one or more tumor suppressor genes. To determine system- recent advances in therapy, a large proportion of atically and precisely the location and extent of 1p deletion neuroblastoma patients succumb to the disease. Thus, in neuroblastomas, we performed allelic loss studies of 737 identification and characterization of the genetic events primary neuroblastomas and genotype analysis of 46 underlying neuroblastoma tumorigenesis and progres- neuroblastoma cell lines. Together, the results defined a sion are important priorities for management of this single region within 1p36.3 that was consistently deleted in malignancy.
    [Show full text]
  • HAND2 Synergistically Enhances Transcription of Dopamine-ß
    Available online at www.sciencedirect.com R Developmental Biology 262 (2003) 183–193 www.elsevier.com/locate/ydbio HAND2 synergistically enhances transcription of dopamine-␤- hydroxylase in the presence of Phox2a Haiming Xu,a Anthony B. Firulli,b Xiaotong Zhang,a and Marthe J. Howarda,* a Department of Anatomy and Neurobiology, Medical College of Ohio, 3000 Arlington Ave., Toledo, OH 43614, USA b Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, 702 Barnhill Drive, Room 2666, Indianapolis, IN 46202-5225, USA Received for publication 28 March 2003, revised 5 June 2003, accepted 5 June 2003 Abstract Noradrenergic neuronal identity and differentiation are controlled by cascades of transcription factors acting downstream of BMP4, including the basic helix–loop–helix DNA binding protein HAND2 and the homeodomain factor Phox2a. Dopamine-␤-hydroxylase (DBH) is the penultimate enzyme required for synthesis of norepinephrine and is thus a noradrenergic cell type-specific marker. We have examined the interaction of HAND2 and Phox2a at the DBH promoter. Using transient transfection of P19 or NT-2 cells, HAND2 is shown to synergistically enhance Phox2a-driven transcriptional activity at the DBH promoter, an effect that is enhanced by cAMP. While mutation of the Phox2a homeodomain binding sites HD1, HD2, and HD3 results in the loss of HAND2/Phox2a transactivation of DBH, it is the interaction of HAND2/Phox2a at the CRE/AP1-HD1/2 domains in the DBH enhancer that are required for synergistic activation by HAND2. We find that HAND2 functions as a transcriptional activator without directly binding to E-box sequences in the DBH promoter, suggesting that HAND2-mediated DBH activity occurs by protein–protein interactions with other transcriptional regulators.
    [Show full text]
  • A Rare CHD5 Haplotype and Its Interactions with Environmental
    Xiao et al. BMC Cancer (2018) 18:658 https://doi.org/10.1186/s12885-018-4551-y RESEARCHARTICLE Open Access ArareCHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk Qin Xiao1,2†, Lianzhou Chen3†, Haiqing Luo1,4†, Hongmei Li1,5†, Qingming Kong6, Fei Jiao7, Shifeng Pang1, Ming Zhang8, Feifei Lan9, Wenguo Fan10, Hui Luo1*, Tao Tao8* and Xiao Zhu1* Abstract Background: CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods: Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results: We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions: Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Keywords: CHD5, Gene haplotype, Hepatocellular carcinoma, Alcohol intake, Risk Background is one of the nine members of the CHD-binding en- Hepatocellular carcinoma (HCC) is the most common zymes and belongs to the snf2 DNA helicase/methylase primary liver cancer and has the worst prognoses of all superfamily [2].
    [Show full text]
  • CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression
    Developmental Cell Article CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression Chris M. Egan,1,9 Ulrika Nyman,7,9 Julie Skotte,3 Gundula Streubel,1 Siobha´ n Turner,1 David J. O’Connell,6 Vilma Rraklli,7 Michael J. Dolan,1 Naomi Chadderton,1 Klaus Hansen,3 Gwyneth Jane Farrar,1 Kristian Helin,3,4,5 Johan Holmberg,7,8,10,* and Adrian P. Bracken1,2,10,* 1The Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland 2The Adelaide and Meath Hospital, Incorporating the National Children’s Hospital, Dublin 16, Ireland 3Biotech Research and Innovation Centre (BRIC) 4Centre for Epigenetics 5The Danish Stem Cell Center (DanStem) University of Copenhagen, 2200 Copenhagen, Denmark 6The Conway Institute, University College Dublin, Dublin 4, Ireland 7Ludwig Institute for Cancer Research 8Department of Cell and Molecular Biology Karolinska Institutet, Stockholm S-171 77, Sweden 9These authors contributed equally to this work 10These authors contributed equally to this work *Correspondence: [email protected] (J.H.), [email protected] (A.P.B.) http://dx.doi.org/10.1016/j.devcel.2013.07.008 SUMMARY alternative lineages are silenced. Furthermore, the precise roles of chromatin regulators during neuronal lineage specification The chromatin remodeler CHD5 is expressed in neu- remain largely unexplored. ral tissue and is frequently deleted in aggressive Chromatin regulators are generally considered to act as facili- neuroblastoma. Very little is known about the function tators of lineage specification, rather than actually directing the of CHD5 in the nervous system or its mechanism of process (Holmberg and Perlmann, 2012).
    [Show full text]
  • REVIEW ARTICLE Pediatric Disorders with Autonomic Dysfunction: What
    0031-3998/05/5801-0001 PEDIATRIC RESEARCH Vol. 58, No. 1, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. REVIEW ARTICLE Pediatric Disorders with Autonomic Dysfunction: What Role for PHOX2B? CLAUDE GAULTIER, HA TRANG, STÉPHANE DAUGER, AND JORGE GALLEGO INSERM U676 [C.G., S.D., J.G.], Services de Physiologie [C.G., H.T.] et de Réanimation Médicale Pédiatrique [S.D.], Hôpital Robert Debré, 75019 Paris, France ABSTRACT Hirschsprung disease, neuroblastomas, and congenital central crest disorders, international databases of clinical symptoms and hypoventilation syndrome can occur in combination, and familial molecular test results should be established. Furthermore, the cases have been reported in all three conditions. This suggests development of genetic mouse models should help to improve variable expression of a single genetic abnormality as the com- our understanding of the molecular mechanisms underlying neu- mon cause to these neural crest disorders. Because the PHOX2B ral crest disorders. (Pediatr Res 58: 1–6, 2005) gene is pivotal in the development of most relays of the auto- nomic nervous system, including all autonomic neural crest derivatives, it was considered a candidate gene for the above Abbreviations conditions. Recent studies have shown that 1) PHOX2B is the ANS, autonomic nervous system main disease-causing gene for congenital central hypoventilation CCHS, congenital central hypoventilation syndrome syndrome, an autosomal dominant disorder with incomplete HASH-1, human achaete-scute homologous 1 gene penetrance; 2) PHOX2B is the first gene for which germline HSCR, Hirschsprung disease mutations have been demonstrated to predispose to neuroblas- LO-CHS, late-onset central hypoventilation syndrome toma; and 3) Hirschsprung disease was associated with an in- MASH-1, mammalian achaete-scute homologous 1 gene tronic single-nucleotide polymorphism of the PHOX2B gene in a PHOX2B, paired-like homeobox 2b gene case-control study.
    [Show full text]
  • The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas
    Cancers 2020, 12 S1 of S18 Supplementary Materials: The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas Annarita Nappi, Emery Di Cicco, Caterina Miro, Annunziata Gaetana Cicatiello, Serena Sagliocchi, Giuseppina Mancino, Raffaele Ambrosio, Cristina Luongo, Daniela Di Girolamo, Maria Angela De Stefano, Tommaso Porcelli, Mariano Stornaiuolo and Monica Dentice Figure S1. Strategy for the mutagenesis of Dio2 promoter. (A) Schematic representation of NANOG Binding Site within the Dio2 promoter region. (B) Schematic diagram for site‐directed mutagenesis of NANOG Binding Site on Dio2 promoter region by Recombinant PCR. (C) Representation of the mutated NANOG Binding Site on Dio2 promoter region. (D) Electropherogram of the NANOG Binding Site mutation within the Dio2 promoter. Cancers 2020, 12 S2 of S18 Figure S2. Strategy for the silencing of NANOG expression. (A) Cloning strategies for the generation of NANOG shRNA expression vectors. (B) Electropherograms of the NANOG shRNA sequences cloned into pcDNA3.1 vector. (C) Validation of effective NANOG down-modulation by two different NANOG shRNA vectors was assessed by Western Blot analysis of NANOG expression in BCC cells. (D) Quantification of NANOG protein levels versus Tubulin levels in the same experiment as in C is represented by histograms. Cancers 2020, 12 S3 of S18 Figure S3. The CD34+ cells are characterized by the expression of typical epithelial stemness genes. The mRNA levels of a panel of indicated stemness markers of epidermis were measured by Real Time PCR in the same experiment indicated in figure 3F and G. Cancers 2020, 12 S4 of S18 Figure S4.
    [Show full text]