Exosomes from Plasma of Neuroblastoma Patients Contain Doublestranded DNA Reflecting the Mutational Status of Parental Tumor Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1
The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Quan, Jinhua, Guillaume Adelmant, Jarrod A. Marto, A. Thomas Look, and Timur Yusufzai. 2014. “The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1.” PLoS ONE 9 (9): e108066. doi:10.1371/journal.pone.0108066. http:// dx.doi.org/10.1371/journal.pone.0108066. Published Version doi:10.1371/journal.pone.0108066 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347631 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 Jinhua Quan1,2, Guillaume Adelmant2,3, Jarrod A. Marto2,3, A. Thomas Look4, Timur Yusufzai1,2* 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Blais Proteomics Center, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 4 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America Abstract Loss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown. -
Definition and Characterization of a Region of 1P36.3 Consistently
Oncogene (2005) 24, 2684–2694 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma Peter S White*,1,2, Patricia M Thompson1, Takahiro Gotoh1, Erin R Okawa1, Jun Igarashi1, Marleen Kok1, Cynthia Winter1, Simon G Gregory3, MichaelD Hogarty 1,2, John M Maris1,2,4 and Garrett M Brodeur1,2 1Division of Oncology, The Children’s Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, PA 19104, USA; 2Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; 3Center for Human Genetics, Duke University School of Medicine, Durham, NC 27710, USA; 4Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Substantial genomic and functional evidence from primary Introduction tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of Neuroblastoma is a common pediatric malignancy of human neuroblastomas, suggesting that this region contains the peripheralsympathetic nervous system. Despite one or more tumor suppressor genes. To determine system- recent advances in therapy, a large proportion of atically and precisely the location and extent of 1p deletion neuroblastoma patients succumb to the disease. Thus, in neuroblastomas, we performed allelic loss studies of 737 identification and characterization of the genetic events primary neuroblastomas and genotype analysis of 46 underlying neuroblastoma tumorigenesis and progres- neuroblastoma cell lines. Together, the results defined a sion are important priorities for management of this single region within 1p36.3 that was consistently deleted in malignancy. -
Defining the Transcriptomic Landscape of the Developing Enteric Nervous System and Its Cellular Environment Sweta Roy-Carson Iowa State University, [email protected]
Genetics, Development and Cell Biology Genetics, Development and Cell Biology Publications 2017 Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Sweta Roy-Carson Iowa State University, [email protected] Kevin Natukunda Iowa State University, [email protected] Hsien-chao Chou Iowa State University Narinder Pal Iowa State University Caitlin Farris Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/gdcb_las_pubs See next page for additional authors Part of the Cell and Developmental Biology Commons, and the Molecular Genetics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ gdcb_las_pubs/202. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Genetics, Development and Cell Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Genetics, Development and Cell Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Abstract Background: Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The og al of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. -
A Rare CHD5 Haplotype and Its Interactions with Environmental
Xiao et al. BMC Cancer (2018) 18:658 https://doi.org/10.1186/s12885-018-4551-y RESEARCHARTICLE Open Access ArareCHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk Qin Xiao1,2†, Lianzhou Chen3†, Haiqing Luo1,4†, Hongmei Li1,5†, Qingming Kong6, Fei Jiao7, Shifeng Pang1, Ming Zhang8, Feifei Lan9, Wenguo Fan10, Hui Luo1*, Tao Tao8* and Xiao Zhu1* Abstract Background: CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods: Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results: We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions: Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Keywords: CHD5, Gene haplotype, Hepatocellular carcinoma, Alcohol intake, Risk Background is one of the nine members of the CHD-binding en- Hepatocellular carcinoma (HCC) is the most common zymes and belongs to the snf2 DNA helicase/methylase primary liver cancer and has the worst prognoses of all superfamily [2]. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression
Developmental Cell Article CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression Chris M. Egan,1,9 Ulrika Nyman,7,9 Julie Skotte,3 Gundula Streubel,1 Siobha´ n Turner,1 David J. O’Connell,6 Vilma Rraklli,7 Michael J. Dolan,1 Naomi Chadderton,1 Klaus Hansen,3 Gwyneth Jane Farrar,1 Kristian Helin,3,4,5 Johan Holmberg,7,8,10,* and Adrian P. Bracken1,2,10,* 1The Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland 2The Adelaide and Meath Hospital, Incorporating the National Children’s Hospital, Dublin 16, Ireland 3Biotech Research and Innovation Centre (BRIC) 4Centre for Epigenetics 5The Danish Stem Cell Center (DanStem) University of Copenhagen, 2200 Copenhagen, Denmark 6The Conway Institute, University College Dublin, Dublin 4, Ireland 7Ludwig Institute for Cancer Research 8Department of Cell and Molecular Biology Karolinska Institutet, Stockholm S-171 77, Sweden 9These authors contributed equally to this work 10These authors contributed equally to this work *Correspondence: [email protected] (J.H.), [email protected] (A.P.B.) http://dx.doi.org/10.1016/j.devcel.2013.07.008 SUMMARY alternative lineages are silenced. Furthermore, the precise roles of chromatin regulators during neuronal lineage specification The chromatin remodeler CHD5 is expressed in neu- remain largely unexplored. ral tissue and is frequently deleted in aggressive Chromatin regulators are generally considered to act as facili- neuroblastoma. Very little is known about the function tators of lineage specification, rather than actually directing the of CHD5 in the nervous system or its mechanism of process (Holmberg and Perlmann, 2012). -
Supp Table 6.Pdf
Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin -
Comparative Transcriptomics Reveals Similarities and Differences
Seifert et al. BMC Cancer (2015) 15:952 DOI 10.1186/s12885-015-1939-9 RESEARCH ARTICLE Open Access Comparative transcriptomics reveals similarities and differences between astrocytoma grades Michael Seifert1,2,5*, Martin Garbe1, Betty Friedrich1,3, Michel Mittelbronn4 and Barbara Klink5,6,7 Abstract Background: Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods: We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results: Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Identification of Potential Genes and Mirnas Associated with Sepsis Based on Microarray Analysis
MOLECULAR MEDICINE REPORTS 17: 6227-6234, 2018 Identification of potential genes and miRNAs associated with sepsis based on microarray analysis YIN LI*, FENGXIA ZHANG*, YAN CONG and YUN ZHAO Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China Received May 10, 2017; Accepted September 18, 2017 DOI: 10.3892/mmr.2018.8668 Abstract. Sepsis is a type of systemic inflammatory response the MCODE module. In the integrated DEG‑miRNA‑TF regu- syndrome caused by infection. The present study aimed to latory network, hsa‑miR‑150 (target gene MYLK3) and 21 TFs, examine key genes and microRNAs (miRNAs) involved in comprising 14 upregulated DEGs (including MYC) and seven the pathogenesis of sepsis. The GSE13205 microarray dataset, downregulated DEGs, were identified. The results suggested downloaded from the Gene Expression Omnibus was analyzed that NOP14, NOP2, AATF, GTPBP4, BYSL, MYC, MYLK3 and using bioinformatics tools, and included muscle biopsy speci- miR‑150 may be involved in the pathogenesis of sepsis. mens of 13 patients with sepsis and eight healthy controls. The differentially expressed genes (DEGs) in samples from Introduction patients with sepsis were identified using the Linear Models for Microarray package in R language. Using the Database Sepsis, a type of systemic inflammatory response syndrome for Annotation, Visualization and Integration Discovery (SIRS), is a complication caused by the response of the whole tool, functional and pathway enrichment analyses were body, and injured tissues and organs to an infection (1). In the performed to examine the potential functions of the DEGs. last decade, the incidence rates of sepsis and severe sepsis in The protein‑protein interaction (PPI) network was constructed the population were 4.37 and 2.70 cases per 1,000 individuals, with the DEGs using the Search Tool for the Retrieval of respectively, in high‑income‑countries (including seven Interacting Genes, and the network topology was analyzed countries on four continents); annually, the global mortality using CytoNCA. -
GTPBP4 (T-15): Sc-160426
SAN TA C RUZ BI OTEC HNOL OG Y, INC . GTPBP4 (T-15): sc-160426 BACKGROUND PRODUCT Small G proteins act as molecular switches for regulation of variety of cellu lar Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide processes, such as nuclear transport, signal transduction, membrane traffick - and 0.1% gelatin. ing and protein synthesis. GTPBP4 (GTP binding protein 4), also designated Blocking peptide available for competition studies, sc-160426 P, (100 µg nucleolar GTP-binding protein 1, chronic renal failure gene protein (CRFG), pep tide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). NOG1 or NGB, is a 634 amino acid novel GTP-binding protein that plays a role in 60S ribosomal subunit biogenesis and belongs to the GTP1/OBG family and APPLICATIONS NOG subfamily. Localizing to nucleolus, GTPBP4 has been observed to inhibit cell aggregation and growth when ectopically expressed in tumorigenic GTPBP4 (T-15) is recommended for detection of GTPBP4 of mouse, rat and schwanomma cells, and is believed to act as a tumor supressor when work ing human origin by Western Blotting (starting dilution 1:200, dilution range in conjunction with NF2 (merlin). GTPBP4 contains multiple phosphorylated 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range amino acid residues and is encoded by a gene located on human chromo some 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 10p15.3. 1:30- 1:3000); non cross-reactive with other GTPBP family members. -
The Quest for the 1P36 Tumor Suppressor
Review The Quest for the 1p36 Tumor Suppressor Anindya Bagchi and Alea A. Mills Cold Spring Harbor Laboratory, Cold Spring Harbor, New York Abstract identity are rare. One idea is that 1p36 is inherently unstable. 1p36 Genomic analyses of late-stage human cancers have uncov- Another possibility is that several tumor suppressors work ered deletions encompassing 1p36, thereby providing an together and, therefore, that loss of a combination of these genes is extensive body of literature supporting the idea that a potent a prerequisite for cancer. Because hereditary cancer predisposition tumor suppressor resides in this interval. Although several syndromes do not exist for this genomic region, linkage-based genes have been proposed as 1p36 candidate tumor suppres- methodologies that were so crucial for discovering tumor suppres- sors such as retinoblastoma, are not helpful for identifying tumor sors, convincing evidence that their encoded products protect 1p36 from cancer has been scanty. A recent functional study iden- suppressors in this interval. In short, has presented a major tified chromodomain helicase DNA-binding protein 5 (CHD5)as challenge for the cancer community. a novel tumor suppressor mapping to 1p36. Here, we discuss evidence supporting the tumor-suppressive role of CHD5. Pinpointing the Tumor-Suppressive Region Together, these findings suggest that strategies designed to The underlying assumption for the approach that we took was enhance CHD5 activity could provide novel approaches for that there was a region of 1p36 that when deleted would predispose treating a broad range of human malignancies. [Cancer Res to cancer. Therefore, increased tumorigenicity would provide the 2008;68(8):2551–6] functional readout needed to reveal the location of the tumor suppressor.