CCN3 and Calcium Signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2

Total Page:16

File Type:pdf, Size:1020Kb

CCN3 and Calcium Signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2 Cell Communication and Signaling BioMed Central Review Open Access CCN3 and calcium signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2 Address: 1CNRS UMR 8078, Hôpital Marie Lannelongue, 133, Avenue de la Résistance 92350 Le PLESSIS-ROBINSON, France and 2Laboratoire d'Oncologie Virale et Moléculaire, Tour 54, Case 7048, Université Paris 7-D.Diderot, 2 Place Jussieu 75005 PARIS, France Email: Alain Lombet - [email protected]; Nathalie Planque - [email protected]; Anne-Marie Bleau - [email protected]; Chang Long Li - [email protected]; Bernard Perbal* - [email protected] * Corresponding author Published: 15 August 2003 Received: 26 June 2003 Accepted: 15 August 2003 Cell Communication and Signaling 2003, 1:1 This article is available from: http://www.biosignaling.com/content/1/1/1 © 2003 Lombet et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3. Review sidered that cell populations function as « societies » and Introduction that intercellular communication is pivotal to harmoni- The control of normal cell biology, from life to death ous development during life and to intracellular biologi- involves an extremely complex array of interconnected cal modifications leading to cell death. Efficient signaling pathways, which govern inward and outward coordination is an absolute requirement to safe communication. Over the two past decades, a plethora of functioning proteins have been found to participate in these funda- mental regulatory circuits. In most cases, alterations of sig- It is critical to study and understand cross talking in cell naling result in pathological conditions. For example, population and to identify messengers that allow inte- many of the proteins discovered as oncogenes and tumor grated responses. Unfortunately, very little is known pres- suppressors in cancer cells were shown to be key signaling ently about the processes that coordinate the various molecules. cellular signaling pathways. Signaling is pivotal to the coordinated response of cells in An increasing amount of data points to matricellular pro- tissues and organs within the whole body. It is often con- teins as major players in global control. Members of the Page 1 of 10 (page number not for citation purposes) Cell Communication and Signaling 2003, 1 http://www.biosignaling.com/content/1/1/1 CCN family of proteins have recently emerged as impor- Considering the variety of sometimes opposite biological tant matricellular regulatory factors involved in both functions attributed to the CCN proteins and the tight internal and external cell signaling. spatio-temporal regulation of their expression in many tissues of different origins, we proposed that the CCN pro- The CCN family of proteins teins interact with several different partners and that the Bork coined the CCN acronym in 1993 [1], soon after our resulting combinatorial events are responsible for the discovery of a new gene –nov– presently designated CCN3 variety of their functions [7]. [2] whose expression was enhanced in all myeloblastosis associated virus (MAV)-induced nephroblastomas [3], CCN3 interacts with several different proteins which represent a unique animal model of the Wilms' To identify the potential partners of CCN3, we first used tumor in human [4]. the yeast two-hybrid strategy [11,12]. Two types of consid- erations dictated our choice of the full length CCN3 pro- Analysis of the predicted primary structure of CCN3 indi- tein as bait. Firstly, each individual module was cated that it was structurally related to two other proteins potentially interacting with several factors whose partici- (CYR61/CCN1 and CTGF/CCN2) that had been previ- pation is essential to the biological functions of the fami- ously described as « immediate early » proteins showing lies of proteins that contain these modules. Therefore, mitogenic activities. The concept of a protein family was interaction with many of the potential interactions taking sustained by the fact that these three proteins were sharing place with individual modules might not be directly rele- a common mosaic organization with four structural mod- vant to the functions of CCN3. Secondly, and more ules sharing identity with Insulin like growth factor (IGF)- importantly, some interactions critical for the functions of binding proteins (IGFBPs), Von Willebrand factor type C CCN3 might require the tertiary structure of the full- repeat, thrombospondin type 1 repeat, and secreted regu- length protein. latory factors containing a cystin knot motif involved in dimerization. Several different proteins were found to physically interact with CCN3 in the yeast assay especially fibulin-1C, The discovery of CCN3 provided the first evidence for a integrins, Notch and S100A4 [7]. The physical interaction member of the CCN family of proteins showing antipro- of CCN3 with these proteins has been checked either by liferative activity on chicken embryo fibroblasts (CEF). GST-pull down assay, co-immunprecipitation, co-immu- Interestingly, the aminotruncated version of CCN3 nolocalization, or functional interdependence. The pro- expressed in one MAV-induced nephroblastoma was stim- teins interacting with CCN3 were either secreted, or ulating growth and inducing morphological transforma- localized in the cytosol, or localized in the nucleus of var- tion of the CEF [3]. ious cell types. Since then, three new members of the CCN family have In as much as the conformation and biological activity of been identified. CCN4 and CCN5, which were originally fibulin-1C, integrins, Notch and S100A4 were dependent designated elm1 and rCOP1 respectively [5,6], were also upon calcium, we hypothesized that CCN3 might be described as rodent proteins devoted of an antiprolifera- involved in signaling pathways involving calcium ions. tive activity. Their human counterpart were identified a few years later as WINT-induced secreted proteins (WISP), Considering the considerable importance of calcium as a with a new member (CCN6) originally identified from second messenger, these observations open new avenues EST libraries and designated WISP3. for understanding the role of CCN proteins in cell growth regulation. All CCN proteins except CCN5 – which lacks the CT mod- ule – show a similar multimodular organization. CCN3-Fibulin-1C and calcium Yeast two-hybrid screens indicated that CCN3 interacted The ccn genes are expressed in a wide variety of tissues. with the calcium-binding extracellular matrix glycopro- Expression of CCN proteins has been associated to several tein fibulin-1C [11]. Fibulin-1C is associated with various fundamental biological processes such as angiogenesis, connective tissues, basement membranes and blood; it chondrogenesis, wound healing [7–9]; their expression is was also reported to interact with extracellular matrix pro- detected during muscular differentiation, nervous system teins such as fibronectin, laminin, and fibrinogen [13]. development and bone remodeling with an enhancement Although a distinct function for fibulin-1C has not yet of CTGF correlated to several fibrotic situations [7–9]. been described, evidence has emerged to indicate that it Aberrant ccn gene expression is also associated to tumori- may regulate cell adhesion and migration along protein genesis [10], and has been shown to provide useful mark- fibers within the extracellular matrix and play a role in ers for tumor typing and prognosis. homeostasis and thrombosis [14]. Moreover, fibulin-1C Page 2 of 10 (page number not for citation purposes) Cell Communication and Signaling 2003, 1 http://www.biosignaling.com/content/1/1/1 exhibits calcium-dependent binding and its functions the two subunits. Furthermore, the binding of Ca2+ to a were reported to dependent upon the calcium binding high affinity site seems to be necessary for ligand binding. [11]. It was recently shown that CCN3 physically interacts with The identification of an interaction between fibulin-1C integrins αVβ3 and α5β1 [21]. CCN3 acts on endothelial and CCN3 provides clue for possible interaction of CCN cells to stimulate pro-angiogenic activities, and supports in signaling pathways involving extracellular matrix, cell migration and adhesion through different cell surface cytoskeleton proteins and
Recommended publications
  • Discovery of Endoplasmic Reticulum Calcium Stabilizers to Rescue ER-Stressed Podocytes in Nephrotic Syndrome
    Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome Sun-Ji Parka, Yeawon Kima, Shyh-Ming Yangb, Mark J. Hendersonb, Wei Yangc, Maria Lindahld, Fumihiko Uranoe, and Ying Maggie Chena,1 aDivision of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; bNational Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850; cDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; dInstitute of Biotechnology, University of Helsinki, Helsinki, Finland 00014; and eDivision of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 28, 2019 (received for review August 16, 2018) Emerging evidence has established primary nephrotic syndrome activating transcription factor 6 (ATF6), which act as proximal (NS), including focal segmental glomerulosclerosis (FSGS), as a sensors of ER stress. ER stress activates these sensors by inducing primary podocytopathy. Despite the underlying importance of phosphorylation and homodimerization of IRE1α and PERK/ podocyte endoplasmic reticulum (ER) stress in the pathogenesis of eukaryotic initiation factor 2α (eIF2α), as well as relocalization of NS, no treatment currently targets the podocyte ER. In our mono- ATF6 to the Golgi, where it is cleaved by S1P/S2P proteases from genic podocyte ER stress-induced NS/FSGS mouse model, the 90 kDa to the active 50-kDa ATF6 (8), leading to activation of podocyte type 2 ryanodine receptor (RyR2)/calcium release channel their respective downstream transcription factors, spliced XBP1 on the ER was phosphorylated, resulting in ER calcium leak and (XBP1s), ATF4, and p50ATF6 (8–10).
    [Show full text]
  • Families and the Structural Relatedness Among Globular Proteins
    Protein Science (1993), 2, 884-899. Cambridge University Press. Printed in the USA. Copyright 0 1993 The Protein Society -~~ ~~~~ ~ Families and the structural relatedness among globular proteins DAVID P. YEE AND KEN A. DILL Department of Pharmaceutical Chemistry, University of California, San Francisco, California94143-1204 (RECEIVEDJanuary 6, 1993; REVISEDMANUSCRIPT RECEIVED February 18, 1993) Abstract Protein structures come in families. Are families “closely knit” or “loosely knit” entities? We describe a mea- sure of relatedness among polymer conformations. Based on weighted distance maps, this measure differs from existing measures mainly in two respects: (1) it is computationally fast, and (2) it can compare any two proteins, regardless of their relative chain lengths or degree of similarity. It does not require finding relative alignments. The measure is used here to determine the dissimilarities between all 12,403 possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank (PDB). Combined with minimal spanning trees and hier- archical clustering methods,this measure is used to define structural families. It is also useful for rapidly searching a dataset of protein structures for specific substructural motifs.By using an analogy to distributions of Euclid- ean distances, we find that protein families are not tightly knit entities. Keywords: protein family; relatedness; structural comparison; substructure searches Pioneering work over the past 20 years has shown that positions after superposition. RMS is a useful distance proteins fall into families of related structures (Levitt & metric for comparingstructures that arenearly identical: Chothia, 1976; Richardson, 1981; Richardson & Richard- for example, when refining or comparing structures ob- son, 1989; Chothia & Finkelstein, 1990).
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Identification of Zebrafish Calcium Toolkit Genes and Their Expression
    G C A T T A C G G C A T genes Article Identification of Zebrafish Calcium Toolkit Genes and Their Expression in the Brain Iga Wasilewska 1,2 , Rishikesh Kumar Gupta 1,2 , Oksana Palchevska 1 and Jacek Ku´znicki 1,* 1 International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; [email protected] (I.W.); [email protected] (R.K.G.); [email protected] (O.P.) 2 Postgraduate School of Molecular Medicine, Warsaw Medical University, 61 Zwirki˙ i Wigury St., 02-091 Warsaw, Poland * Correspondence: [email protected] Received: 28 February 2019; Accepted: 13 March 2019; Published: 18 March 2019 Abstract: Zebrafish are well-suited for in vivo calcium imaging because of the transparency of their larvae and the ability to express calcium probes in various cell subtypes. This model organism has been used extensively to study brain development, neuronal function, and network activity. However, only a few studies have investigated calcium homeostasis and signaling in zebrafish neurons, and little is known about the proteins that are involved in these processes. Using bioinformatics analysis and available databases, the present study identified 491 genes of the zebrafish Calcium Toolkit (CaTK). Using RNA-sequencing, we then evaluated the expression of these genes in the adult zebrafish brain and found 380 hits that belonged to the CaTK. Based on quantitative real-time polymerase chain reaction arrays, we estimated the relative mRNA levels in the brain of CaTK genes at two developmental stages. In both 5 dpf larvae and adult zebrafish, the highest relative expression was observed for tmbim4, which encodes a Golgi membrane protein.
    [Show full text]
  • The Cardiac-Specific N-Terminal Region of Troponin I Positions the Regulatory Domain of Troponin C
    The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C Peter M. Hwanga,b,1, Fangze Caib, Sandra E. Pineda-Sanabriab, David C. Corsonb, and Brian D. Sykesb aDivision of General Internal Medicine, Department of Medicine, and bDepartment of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7 Edited by David Baker, University of Washington, Seattle, WA, and approved August 29, 2014 (received for review June 11, 2014) The cardiac isoform of troponin I (cTnI) has a unique 31-residue phosphorylation levels occur in a number of pathologic states, N-terminal region that binds cardiac troponin C (cTnC) to increase including heart failure with reduced ejection fraction, heart failure the calcium sensitivity of the sarcomere. The interaction can be with preserved ejection fraction, dilated cardiomyopathy, and hy- abolished by cTnI phosphorylation at Ser22 and Ser23, an impor- pertrophic cardiomyopathy (5, 8). Although dephosphorylation tant mechanism for regulating cardiac contractility. cTnC contains is likely a compensatory mechanism in many cases, it may be a two EF–hand domains (the N and C domain of cTnC, cNTnC and disease-driving dysregulation in others. cCTnC) connected by a flexible linker. Calcium binding to either Other regulatory mechanisms are strongly influenced by the domain favors an “open” conformation, exposing a large hydro- phosphorylation state of Ser22/23. The Frank–Starling law of the phobic surface that is stabilized by target binding, cTnI[148–158] heart, also known as length-dependent activation or stretch ac- for cNTnC and cTnI[39–60] for cCTnC. We used multinuclear multi- tivation, is more pronounced when Ser22/23 are phosphorylated – dimensional solution NMR spectroscopy to study cTnI[1 73] in (9, 10).
    [Show full text]
  • Proteomics of Serum Extracellular Vesicles Identifies a Novel COPD Biomarker, Fibulin-3 from Elastic Fibres
    ORIGINAL ARTICLE COPD Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres Taro Koba 1, Yoshito Takeda1, Ryohei Narumi2, Takashi Shiromizu2, Yosui Nojima 3, Mari Ito3, Muneyoshi Kuroyama1, Yu Futami1, Takayuki Takimoto4, Takanori Matsuki1, Ryuya Edahiro1, Satoshi Nojima5, Yoshitomo Hayama1, Kiyoharu Fukushima1, Haruhiko Hirata1, Shohei Koyama1, Kota Iwahori1, Izumi Nagatomo1, Mayumi Suzuki1, Yuya Shirai1, Teruaki Murakami1, Kaori Nakanishi 1, Takeshi Nakatani1, Yasuhiko Suga1, Kotaro Miyake1, Takayuki Shiroyama1, Hiroshi Kida 1, Takako Sasaki6, Koji Ueda7, Kenji Mizuguchi3, Jun Adachi2, Takeshi Tomonaga2 and Atsushi Kumanogoh1 ABSTRACT There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl- peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD.
    [Show full text]
  • Calpain Inhibitor and Ibudilast Rescue Β Cell Functions in a Cellular Model of Wolfram Syndrome
    Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome Lien D. Nguyena,b,1, Tom T. Fischera,c,1, Damien Abreud,e, Alfredo Arroyoa, Fumihiko Uranod,f, and Barbara E. Ehrlicha,b,2 aDepartment of Pharmacology, Yale University, New Haven, CT 06520; bInterdepartmental Neuroscience Program, Yale University, New Haven, CT 06520; cInstitute of Pharmacology, University of Heidelberg, 69117 Heidelberg, Germany; dDepartment of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110; eMedical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110; and fDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved June 1, 2020 (received for review April 18, 2020) Wolfram syndrome is a rare multisystem disease characterized by diseases, such as Alzheimer’s disease (22), cancer progression childhood-onset diabetes mellitus and progressive neurodegener- (23), and diabetes mellitus (24, 25). ation. Most cases are attributed to pathogenic variants in a single Here we show that KO of WFS1 in rat insulinoma (INS1) cells gene, Wolfram syndrome 1 (WFS1). There currently is no disease- led to elevated resting cytosolic calcium, reduced stimulus- modifying treatment for Wolfram syndrome, as the molecular con- evoked calcium signaling, and, consequently, hypersusceptibility sequences of the loss of WFS1 remain elusive. Because diabetes to hyperglycemia and decreased glucose-stimulated insulin se- mellitus is the first diagnosed symptom of Wolfram syndrome, we cretion. Overexpression of WFS1 or WFS1’s interacting partner aimed to further examine the functions of WFS1 in pancreatic β neuronal calcium sensor-1 (NCS1) reversed the deficits observed cells in the context of hyperglycemia.
    [Show full text]
  • Ryanodine Receptor Regulation During Exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E
    COMMENTARY COMMENTARY Intensity matters: Ryanodine receptor regulation during exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E. Lehnarta,d,1 aHeart Research Center Göttingen, Clinic of Cardiology & Pulmonology, University Medical Center & Georg-August-University, 37099 Göttingen, Germany; bThe National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; cKing’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE17EH, United Kingdom; and dGerman Centre for Cardiovascular Research site Götttingen, 37099 Göttingen, Germany Skeletal muscles provide fascinating examples which were correlated with depressed muscle how humans have evolved and exercise. While function (3). humans developed superior cognition, Previous studies determined that calpain metabolome evolution studies indicate an activation cleaves RyR1 channels into stably accelerated parallel decline in muscle ener- associated ∼375- and ∼150-kDa fragments getic capacity and strength (1). New forms of sustaining subconductance channel open gat- locomotion including exceptional endurance ing in vitro (6). Recombinant, N-terminally were adapted ∼2 million years ago (2). Now- truncated RyR1 channels reconstituted in lipid adays, we generally assume healthy aging and bilayers exhibited CICR-like functions (7). disease prevention depend on regular Notably, 24 h after HIIT exercise recreation- exercise. Contrasting with evolutionary ally active humans showed significant RyR1 adaptation, high-intensity interval training fragmentation (re)producing a ∼375-kDa (HIIT) represents an ultrashort form of ex- fragment in muscle biopsies similar to cal- ercise and a promising intervention for dis- pain-treated RyR1 (3, 6). Calpain is known ease prevention. However, the molecular to cleave RyR1 protomers at residues 1383– mechanisms are incompletely understood.
    [Show full text]
  • Calmodulin Binding Proteins and Alzheimer's Disease
    International Journal of Molecular Sciences Review Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin Danton H. O’Day 1,2 1 Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; [email protected] 2 Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada Received: 18 September 2020; Accepted: 3 October 2020; Published: 5 October 2020 Abstract: The integral role of calmodulin in the amyloid pathway and neurofibrillary tangle formation in Alzheimer’s disease was first established leading to the “Calmodulin Hypothesis”. Continued research has extended our insight into the central function of the small calcium sensor and effector calmodulin and its target proteins in a multitude of other events associated with the onset and progression of this devastating neurodegenerative disease. Calmodulin’s involvement in the contrasting roles of calcium/CaM-dependent kinase II (CaMKII) and calcineurin (CaN) in long term potentiation and depression, respectively, and memory impairment and neurodegeneration are updated. The functions of the proposed neuronal biomarker neurogranin, a calmodulin binding protein also involved in long term potentiation and depression, is detailed. In addition, new discoveries into calmodulin’s role in regulating glutamate receptors (mGluR, NMDAR) are overviewed. The interplay between calmodulin and amyloid beta in the regulation of PMCA and ryanodine receptors are prime examples of how the buildup of classic biomarkers can underly the signs and symptoms of Alzheimer’s. The role of calmodulin in the function of stromal interaction molecule 2 (STIM2) and adenosine A2A receptor, two other proteins linked to neurodegenerative events, is discussed.
    [Show full text]
  • New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
    brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
    [Show full text]
  • Cytoskeletal Remodeling in Cancer
    biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
    [Show full text]