Genomic Bases Underlying the Adaptive Radiation of Core Landbirds Yonghua Wu1* , Yi Yan1, Yuanqin Zhao1, Li Gu1, Songbo Wang2 and David H

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Bases Underlying the Adaptive Radiation of Core Landbirds Yonghua Wu1* , Yi Yan1, Yuanqin Zhao1, Li Gu1, Songbo Wang2 and David H Wu et al. BMC Ecol Evo (2021) 21:162 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01888-5 RESEARCH ARTICLE Open Access Genomic bases underlying the adaptive radiation of core landbirds Yonghua Wu1* , Yi Yan1, Yuanqin Zhao1, Li Gu1, Songbo Wang2 and David H. Johnson3* Abstract Background: Core landbirds undergo adaptive radiation with diferent ecological niches, but the genomic bases that underlie their ecological diversifcation remain unclear. Results: Here we used the genome-wide target enrichment sequencing of the genes related to vision, hearing, language, temperature sensation, beak shape, taste transduction, and carbohydrate, protein and fat digestion and absorption to examine the genomic bases underlying their ecological diversifcation. Our comparative molecular phy- loecological analyses show that diferent core landbirds present adaptive enhancement in diferent aspects, and two general patterns emerge. First, all three raptorial birds (Accipitriformes, Strigiformes, and Falconiformes) show a con- vergent adaptive enhancement for fat digestion and absorption, while non-raptorial birds tend to exhibit a promoted capability for protein and carbohydrate digestion and absorption. Using this as a molecular marker, our results show relatively strong support for the raptorial lifestyle of the common ancestor of core landbirds, consequently suggest- ing a single origin of raptors, followed by two secondary losses of raptorial lifestyle within core landbirds. In addition to the dietary niche, we fnd at temporal niche that diurnal birds tend to exhibit an adaptive enhancement in bright- light vision, while nocturnal birds show an increased adaption in dim-light vision, in line with previous fndings. Conclusions: Our molecular phyloecological study reveals the genome-wide adaptive diferentiations underlying the ecological diversifcation of core landbirds. Keywords: Gene capture, Convergent evolution, Raptor, Digestion, Ancestral trait reconstruction Background Falconiformes), which share many raptorial-lifestyle Core landbirds (Telluraves) is the recently defned larg- characteristics, similar selections may have occurred est clade in Neoaves, including raptors, woodpeckers, between them [5]. Despite their ecological similarities, parrots, and songbirds [1–3]. Core landbirds adapt to phylogenetic analyses show that the three birds of prey diverse environments with diferent phenotypes related are relatively distantly related, and it remains unknown to diets, diel activity patterns, language and hearing, etc. whether their similar raptorial lifestyles are a result of [4]. Adapting to diverse environments, diferent core single origin [2, 3] or multiple origin [1]. landbirds may have been subjected to divergent selec- Te Avian Phylogenomics Project evaluates the tions, whereas for ecologically similar taxa, for instance, genomic evolution of 48 avian species within the class three birds of prey (Accipitriformes, Strigiformes, and Aves with relatively little detailed analyses of genomic diference among avian subgroups, such as core landbirds [6]. Other comparative genomic or transcriptomic stud- *Correspondence: [email protected]; [email protected] ies related to core landbirds are restricted to specifc taxa 1 School of Life Sciences, Northeast Normal University, Changchun 130024, China [7–13] or specifc genes related to vision and digestion 3 Global Owl Project, 6504 Carriage Drive, Alexandria, VA 22310, USA [14–16]. A recent study of 16 genomes of birds of prey Full list of author information is available at the end of the article reveals their shared genetic adaptation underlying their © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Wu et al. BMC Ecol Evo (2021) 21:162 Page 2 of 14 anatomical structures and sensory, muscle, circulatory, followed the MPE approach and used likelihood ratio and respiratory systems related to a raptorial lifestyle tests based on branch and branch-site models imple- [5]. Despite these eforts, a more comprehensive study mented in the Codeml program of PAML [23] to identify with a sufcient sampling across both diferent taxa and positively selected genes (PSGs) along branches lead- functionally diferent genes is needed to better elucidate ing to diverse core landbird taxa. In addition to PAML, the integrative evolution of core landbirds in adapting to we employed the program RELAX [24] to examine the diverse ecological environments. selection strength changes (e.g., intensifed or relaxed) of Te recent development of a molecular phyloecologi- genes for our focal taxa. cal (MPE) approach, which employs a comparative phy- logenetic analysis of biologically meaningful genes, has been demonstrated to have power to reveal the genetic Selection analyses of the genes related to senses, bases that underlie phenotypic diferentiations and ena- language, beak and temperature ble ancestral trait reconstruction [17, 18]. In light of the To examine the molecular bases of phenotypic diferen- MPE approach, we in this study use target enrichment tiations of core landbird taxa, we initially constructed a sequencing to obtain gene sequences to examine the dataset by combining the captured coding sequences of genetic bases that underlie the ecological diversifcation our 46 taxa with the sequence data of 33 core landbird of core landbirds. Target enrichment sequencing has species available from GenBank (Fig. 1, Additional fle 3: been widely used in gene capture across species [19–22]. Table S3), referred to as the core landbird dataset here- Our comparative analyses show that diferent core land- after. Based on the core landbird dataset, we frstly used bird taxa exhibit taxon-specifc adaptations, whereas PAML to examine the adaptive evolution of the 33 genes ecologically similar taxa present somewhat similar evolu- involved in the phototransduction pathway (Fig. 2, Addi- tionary adaptations. Our study reveals the genomic bases tional fles 4, 5: Tables S4, 5), which have been used as underlying the adaptive radiation of core landbirds and the molecular markers to determine the diel activity pat- provides insights into the evolutionary history of their terns of birds and mammals [17, 18]. We found fve PSGs ecological diversifcation. (GRK1, LW S, RH2, SWS2, and ARR3) along the branch leading to Strigiformes (owls), which are mainly crepus- Results cularly and nocturnally active. GRK1 is a rod-expressed We used target enrichment sequencing to obtain the gene and is involved in the inactivation of activated rho- coding sequences of 308 genes related to vision, hear- dopsin, contributing to photoresponse recovery in dim- ing, language, temperature sensation, beak shape, taste light conditions. LW S, RH2, and SWS2, respectively, transduction, and carbohydrate, protein and fat diges- encode red-, green-, and blue-sensitive cone opsins, tion and absorption (Additional fle 1, Table S1; Addi- and their positive selections in owls are linked to spec- tional fle 13) from 46 core landbird taxa with an address tral tuning to maximize light abortion under crepus- on the sampling of birds of prey (Fig. 1, Additional fle 2: cular conditions, as previously evidenced [16]. ARR3 is Table S2), for which there are only sparse genome data involved in the inactivation of cone opsins for photore- available thus far. For the target enrichment sequencing sponse recovery. Moreover, we did not fnd any cap- of our focal 308 genes, we designed baits based on the tured sequences of violet- or ultraviolet-sensitive opsin coding sequences of these genes from multiple divergent gene (SWS1) from all 28 owl species examined, and this species (e.g., falcon, eagle and owl), which has been dem- was consistent with previous studies that consistently onstrated to be a highly efective strategy for increasing show the absence of the gene expression or sequence of capture efciency [22]. We then employed the same set SWS1 in owls [8, 9, 14, 16]. In addition to Strigiformes, of baits to capture and sequence our target genes across we found PSGs along the branch leading to Coraciimor- the 46 taxa using the MYbaits target enrichment sys- phae and Passeriformes, both of which are generally diur- tem (MYcroarray, Arbor Biosciences) (Additional fle 2: nal [4, 17]. For Coraciimorphae, two PSGs (CNGB3 and Table S2). Te average number of reads sequenced across SLC24A2) were found. CNGB3 and SLC24A2 are cone- our 46 taxa was 4,716,979.58, the average total base pair expressed and are respectively involved in photoresponse yield was
Recommended publications
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • AOU Classification Committee – North and Middle America
    AOU Classification Committee – North and Middle America Proposal Set 2016-C No. Page Title 01 02 Change the English name of Alauda arvensis to Eurasian Skylark 02 06 Recognize Lilian’s Meadowlark Sturnella lilianae as a separate species from S. magna 03 20 Change the English name of Euplectes franciscanus to Northern Red Bishop 04 25 Transfer Sandhill Crane Grus canadensis to Antigone 05 29 Add Rufous-necked Wood-Rail Aramides axillaris to the U.S. list 06 31 Revise our higher-level linear sequence as follows: (a) Move Strigiformes to precede Trogoniformes; (b) Move Accipitriformes to precede Strigiformes; (c) Move Gaviiformes to precede Procellariiformes; (d) Move Eurypygiformes and Phaethontiformes to precede Gaviiformes; (e) Reverse the linear sequence of Podicipediformes and Phoenicopteriformes; (f) Move Pterocliformes and Columbiformes to follow Podicipediformes; (g) Move Cuculiformes, Caprimulgiformes, and Apodiformes to follow Columbiformes; and (h) Move Charadriiformes and Gruiformes to precede Eurypygiformes 07 45 Transfer Neocrex to Mustelirallus 08 48 (a) Split Ardenna from Puffinus, and (b) Revise the linear sequence of species of Ardenna 09 51 Separate Cathartiformes from Accipitriformes 10 58 Recognize Colibri cyanotus as a separate species from C. thalassinus 11 61 Change the English name “Brush-Finch” to “Brushfinch” 12 62 Change the English name of Ramphastos ambiguus 13 63 Split Plain Wren Cantorchilus modestus into three species 14 71 Recognize the genus Cercomacroides (Thamnophilidae) 15 74 Split Oceanodroma cheimomnestes and O. socorroensis from Leach’s Storm- Petrel O. leucorhoa 2016-C-1 N&MA Classification Committee p. 453 Change the English name of Alauda arvensis to Eurasian Skylark There are a dizzying number of larks (Alaudidae) worldwide and a first-time visitor to Africa or Mongolia might confront 10 or more species across several genera.
    [Show full text]
  • Leptosomiformes ~ Trogoniformes ~ Bucerotiformes ~ Piciformes
    Birds of the World part 6 Afroaves The core landbirds originating in Africa TELLURAVES: AFROAVES – core landbirds originating in Africa (8 orders) • ORDER ACCIPITRIFORMES – hawks and allies (4 families, 265 species) – Family Cathartidae – New World vultures (7 species) – Family Sagittariidae – secretarybird (1 species) – Family Pandionidae – ospreys (2 species) – Family Accipitridae – kites, hawks, and eagles (255 species) • ORDER STRIGIFORMES – owls (2 families, 241 species) – Family Tytonidae – barn owls (19 species) – Family Strigidae – owls (222 species) • ORDER COLIIFORMES (1 family, 6 species) – Family Coliidae – mousebirds (6 species) • ORDER LEPTOSOMIFORMES (1 family, 1 species) – Family Leptosomidae – cuckoo-roller (1 species) • ORDER TROGONIFORMES (1 family, 43 species) – Family Trogonidae – trogons (43 species) • ORDER BUCEROTIFORMES – hornbills and hoopoes (4 families, 74 species) – Family Upupidae – hoopoes (4 species) – Family Phoeniculidae – wood hoopoes (9 species) – Family Bucorvidae – ground hornbills (2 species) – Family Bucerotidae – hornbills (59 species) • ORDER PICIFORMES – woodpeckers and allies (9 families, 443 species) – Family Galbulidae – jacamars (18 species) – Family Bucconidae – puffbirds (37 species) – Family Capitonidae – New World barbets (15 species) – Family Semnornithidae – toucan barbets (2 species) – Family Ramphastidae – toucans (46 species) – Family Megalaimidae – Asian barbets (32 species) – Family Lybiidae – African barbets (42 species) – Family Indicatoridae – honeyguides (17 species) – Family
    [Show full text]
  • Asynchronous Evolution of Interdependent Nest Characters Across the Avian Phylogeny
    ARTICLE DOI: 10.1038/s41467-018-04265-x OPEN Asynchronous evolution of interdependent nest characters across the avian phylogeny Yi-Ting Fang1, Mao-Ning Tuanmu 2 & Chih-Ming Hung 2 Nest building is a widespread behavior among birds that reflects their adaptation to the environment and evolutionary history. However, it remains unclear how nests evolve and how their evolution relates to the bird phylogeny. Here, by examining the evolution of three nest — — 1234567890():,; characters structure, site, and attachment across all bird families, we reveal that nest characters did not change synchronically across the avian phylogeny but had disparate evolutionary trajectories. Nest structure shows stronger phylogenetic signal than nest site, while nest attachment has little variation. Nevertheless, the three characters evolved inter- dependently. For example, the ability of birds to explore new nest sites might depend on the emergence of novel nest structure and/or attachment. Our results also reveal labile nest characters in passerines compared with other birds. This study provides important insights into avian nest evolution and suggests potential associations between nest diversification and the adaptive radiations that generated modern bird lineages. 1 Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. 2 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan. Correspondence and requests for materials should be addressed to M.-N.T. (email: [email protected]) or to C.-M.H. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:1863 | DOI: 10.1038/s41467-018-04265-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04265-x lmost all birds build nests, ranging from a simple scratch attachment.
    [Show full text]
  • Verbalizing Phylogenomic Conflict: Representation of Node Congruence Across Competing Reconstructions of the Neoavian Explosion
    bioRxiv preprint doi: https://doi.org/10.1101/233973; this version posted December 14, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Tempe, December 12, 2017 RESEARCH ARTICLE (1st submission) Verbalizing phylogenomic conflict: Representation of node congruence across competing reconstructions of the neoavian explosion Nico M. Franz1*, Lukas J. Musher2, Joseph W. Brown3, Shizhuo Yu4, Bertram Ludäscher5 1 School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America 2 Richard Gilder Graduate School and Department of Ornithology, American Museum of Natural History, New York, New York, United States of America 3 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom 4 Department of Computer Science, University of California at Davis, Davis, California, United States of America 5 School of Information Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America * Corresponding author E-mail: [email protected] Short title: Verbalizing phylogenomic conflict Abstract Phylogenomic research is accelerating the publication of landmark studies that aim to resolve deep divergences of major organismal groups. Meanwhile, systems for identifying and integrating the novel products of phylogenomic inference – such as newly supported clade concepts – have not kept pace. However, the ability to verbalize both node concept congruence and conflict across multiple, (in effect) simultaneously endorsed phylogenomic hypotheses, is a critical prerequisite for building synthetic data environments for biological systematics, thereby also benefitting other domains impacted by these (conflicting) inferences.
    [Show full text]
  • A Model of Avian Genome Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/034710; this version posted April 30, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Model of Avian Genome Evolution LiaoFu LUO Faculty of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China email: [email protected] Abstract Based on the reconstruction of evolutionary tree for avian genome a model of genome evolution is proposed. The importance of k-mer frequency in determining the character divergence among avian species is demonstrated. The classical evolutionary equation is written in terms of nucleotide frequencies of the genome varying in time. The evolution is described by a second-order differential equation. The diversity and the environmental potential play dominant role on the genome evolution. Environmental potential parameters, evolutionary inertial parameter and dissipation parameter are estimated by avian genomic data. To describe the speciation event the quantum evolutionary equation is proposed which is the generalization of the classical equation through correspondence principle. The Schrodinger wave function is the probability amplitude of nucleotide frequencies. The discreteness of quantum state is deduced and the ground-state wave function of avian genome is obtained. As the evolutionary inertia decreasing the classical phase of evolution is transformed into quantum phase. New species production is described by the quantum transition between discrete quantum states. The quantum transition rate is calculated which provides a clue to understand the law of the rapid post-Cretaceous radiation of neoavian birds.
    [Show full text]
  • Coos, Booms, and Hoots: the Evolution of Closed-Mouth Vocal Behavior in Birds
    ORIGINAL ARTICLE doi:10.1111/evo.12988 Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds Tobias Riede, 1,2 Chad M. Eliason, 3 Edward H. Miller, 4 Franz Goller, 5 and Julia A. Clarke 3 1Department of Physiology, Midwestern University, Glendale, Arizona 85308 2E-mail: [email protected] 3Department of Geological Sciences, The University of Texas at Austin, Texas 78712 4Department of Biology, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X9, Canada 5Department of Biology, University of Utah, Salt Lake City 84112, Utah Received January 11, 2016 Accepted June 13, 2016 Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations.
    [Show full text]
  • Data Types and the Phylogeny of Neoaves
    Article Data Types and the Phylogeny of Neoaves Edward L. Braun * and Rebecca T. Kimball * Department of Biology, University of Florida, Gainesville, FL 32611, USA * Correspondence: ebraun68@ufl.edu (E.L.B.); rkimball@ufl.edu (R.T.K.) Simple Summary: Some of the earliest studies using molecular data to resolve evolutionary history separated birds into three main groups: Paleognathae (ostriches and allies), Galloanseres (ducks and chickens), and Neoaves (the remaining ~95% of avian species). The early evolution of Neoaves, however, has remained challenging to understand, even as data from whole genomes have become available. We have recently proposed that some of the conflicts among recent studies may be due to the type of genomic data that is analyzed (regions that code for proteins versus regions that do not). However, a rigorous examination of this hypothesis using coding and non-coding data from the same genomic regions sequenced from a relatively large number of species has not yet been conducted. Here we perform such an analysis and show that data type does influence the methods used to infer evolutionary relationships from molecular sequences. We also show that conducting analyses using models of sequence evolution that were chosen to minimize reconstruction errors result in coding and non-coding trees that are much more similar, and we add to the evidence that non-coding data provide better information regarding neoavian relationships. While a few relationships remain problematic, we are approaching a good understanding of the evolutionary history for major avian groups. Abstract: The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite intense study.
    [Show full text]
  • Whole-Genome Analyses Resolve Early Branches in the Tree of Life of Modern Birds Erich D
    AFLOCKOFGENOMES 90. J. F. Storz, J. C. Opazo, F. G. Hoffmann, Mol. Phylogenet. Evol. RESEARCH ARTICLE 66, 469–478 (2013). 91. F. G. Hoffmann, J. F. Storz, T. A. Gorr, J. C. Opazo, Mol. Biol. Evol. 27, 1126–1138 (2010). Whole-genome analyses resolve ACKNOWLEDGMENTS Genome assemblies and annotations of avian genomes in this study are available on the avian phylogenomics website early branches in the tree of life (http://phybirds.genomics.org.cn), GigaDB (http://dx.doi.org/ 10.5524/101000), National Center for Biotechnology Information (NCBI), and ENSEMBL (NCBI and Ensembl accession numbers of modern birds are provided in table S2). The majority of this study was supported by an internal funding from BGI. In addition, G.Z. was 1 2 3 4,5,6 7 supported by a Marie Curie International Incoming Fellowship Erich D. Jarvis, *† Siavash Mirarab, * Andre J. Aberer, Bo Li, Peter Houde, grant (300837); M.T.P.G. was supported by a Danish National Cai Li,4,6 Simon Y. W. Ho,8 Brant C. Faircloth,9,10 Benoit Nabholz,11 Research Foundation grant (DNRF94) and a Lundbeck Foundation Jason T. Howard,1 Alexander Suh,12 Claudia C. Weber,12 Rute R. da Fonseca,6 grant (R52-A5062); C.L. and Q.L. were partially supported by a 4 4 4 4 7,13 14 Danish Council for Independent Research Grant (10-081390); Jianwen Li, Fang Zhang, Hui Li, Long Zhou, Nitish Narula, Liang Liu, and E.D.J. was supported by the Howard Hughes Medical Institute Ganesh Ganapathy,1 Bastien Boussau,15 Md.
    [Show full text]
  • A Record of a Landbird (Telluraves) from the Eocene Ikovo Locality (East Ukraine)
    Acta zoologica cracoviensia, 59(1) 2016 ISSN 2299-6060, e-ISSN 2300-0163 Kraków, 28 October, 2016 doi:10.3409/azc.59_1.37 Ó Institute of Systematics and Evolution of Animals, PAS A record of a landbird (Telluraves) from the Eocene Ikovo locality (East Ukraine) Evgeniy ZVONOK and Leonid GOROBETS Received: 06 June 2016. Accepted: 30 August 2016. Available online: 14 September 2016. ZVONOK E., GOROBETS L. 2016. A record of a landbird (Telluraves) from the Eocene Ikovo locality (East Ukraine). Acta zool. cracov., 59(1): 37-45. Abstract. First remains of a landbird from the Eocene (Lutetian) marine deposits of the Ikovo locality in Ukraine are described here. These include a single coracoid bone of an imma- ture individual. The coracoid exhibits a combination of traits that is unknown in other spe- cies of birds. However, a more complete individual is required to decide if there is a new species of extinct bird. The described specimen exhibits traits comparable to those of the Telluraves clade and is most similar to the Eocene leptosomid Plesiocathartes. Key words: Lutetian, Ukraine, Telluraves, coracoid, Plesiocathartes. * Evgeniy ZVONOK, Taras Shevchenko University, Department of Geography, Oboronnaya st. 2, Luhansk 91011, Ukraine. E-mail: [email protected] Leonid GOROBETS, National Museum of Natural History at the National Academy of Sci- ences of Ukraine, Department of Paleontology, Bohdan Khmelnitsky st. 15, Kyiv 199034, Ukraine; Taras Shevchenko National University of Kyiv, Department of Ecology and En- vironmental Protection, Volodymyrska st. 64/13, Kyiv 01601, Ukraine. E-mail: [email protected] I. INTRODUCTION The assemblage of birds from the Ikovo locality, Luhansk Region, Ukraine (49°31¢42¢¢ N, 39°3¢59.5¢¢ E; lower Lutetian; Fig.
    [Show full text]
  • Avian Genomics : Fledging Into the Wild!
    Erschienen in: Journal of Ornithology ; 156 (2015), 4. - S. 851-865 https://dx.doi.org/10.1007/s10336-015-1253-y Avian genomics: fledging into the wild! Robert H. S. Kraus1,2 • Michael Wink3 Abstract Next generation sequencing (NGS) technolo- Zusammenfassung gies provide great resources to study bird evolution and avian functional genomics. They also allow for the iden- Die Ornithologie ist im Zeitalter der Genomik ange- tification of suitable high-resolution markers for detailed kommen analyses of the phylogeography of a species or the con- nectivity of migrating birds between breeding and winter- Neue Sequenziertechnologien (Next Generation Sequen- ing populations. This review discusses the application of cing; NGS) ero¨ffnen die Mo¨glichkeit, Evolution und DNA markers for the study of systematics and phylogeny, funktionelle Genomik bei Vo¨geln umfassend zu untersu- but also population genetics and phylogeography. chen. Weiterhin erlaubt die NGS-Technologie, geeignete, Emphasis in this review is on the new methodology of hochauflo¨sende Markersysteme fu¨r Mikrosatelliten und NGS and its use to study avian genomics. The recent Single Nucleotide Polymorphisms (SNPs) zu identifizieren, publication of the first phylogenomic tree of birds based on um detaillierte Analysen zur Phylogeographie einer Art genome data of 48 bird taxa from 34 orders is presented in oder zur Konnektivita¨t von Zugvo¨geln zwischen Brut- und more detail. Winterpopulationen durchzufu¨hren. Dieses Review widmet sich der Anwendung von DNA Markern fu¨r die Erfor- Keywords Next generation sequencing Á Genetics Á schung von Systematik und Phylogenie sowie Populati- Ornithology Á Whole genome Á Phylogenomics Á Single onsgenetik und Phylogeographie.
    [Show full text]
  • The Origin and Diversification of Birds
    Current Biology Review The Origin and Diversification of Birds Stephen L. Brusatte1,*, Jingmai K. O’Connor2,*, and Erich D. Jarvis3,4,* 1School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 3Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] (S.L.B.), [email protected] (J.K.O.), [email protected] (E.D.J.) http://dx.doi.org/10.1016/j.cub.2015.08.003 Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two de- cades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dino- saurs during the Jurassic (around 165–150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Introduction dinosaurs Dromaeosaurus albertensis or Troodon formosus.This Birds are one of the most conspicuous groups of animals in the clade includes all living birds and extinct taxa, such as Archaeop- modern world.
    [Show full text]