The Valsalva Manoeuvre—Cardiovascular Effects and Performance Technique: a Critical Review Robert Looga ∗

Total Page:16

File Type:pdf, Size:1020Kb

The Valsalva Manoeuvre—Cardiovascular Effects and Performance Technique: a Critical Review Robert Looga ∗ Respiratory Physiology & Neurobiology 147 (2005) 39–49 The Valsalva manoeuvre—cardiovascular effects and performance technique: a critical review Robert Looga ∗ Department of Pathophysiology, Faculty of Medicine, University of Tartu, 19 Ravila, 51014 Tartu, Estonia Received 19 May 2004; received in revised form 6 January 2005; accepted 10 January 2005 Abstract Variations in the technique of the Valsalva manoeuvre (VM) have been shown to greatly influence the pattern of cardiovascular response (CVR) to the test. Intra-strain tachycardia, post-strain bradycardia, Valsalva ratio, and baroreflex sensitivity decrease in proportion to an increase in lung volume and a decrease in strain pressure at VM. In conditions of completely expanded lungs and low strain pressure many subjects reveal an intra-strain bradycardic response to VM instead of the usual tachycardic one. Intra-strain arterial hypotension and post-strain hypertension decrease with decrease in strain pressure. The changes in heart rate and blood pressure during an expiratory VM are greater than the responses observed during completition of an inspiratory VM. The rate of the deep inspiration prior to strain has an impact particularly on phase I of the VM. The magnitude of the CVR correlates with the strain duration, particularly at high levels of strain pressure, and depends on the baseline level of the cardiovascular parameters and their variations. The paper discusses the possible mechanisms of different CVRs to variations in the technique of the VM. Some practical recommendations are suggested. © 2005 Elsevier B.V. All rights reserved. Keywords: Valsalva manoeuvre, methods; Cardio-respiratory control, intrapulmonary pressure; Volume, lung; Strain duration, baseline level, cardiovascular response, its mechanisms 1. Introduction clusion finding a significant tachycardia as a typical re- sponse to the VM. The reason for this apparent discrep- In 1851, Ernst Heinrich Weber reported a consider- ancy has remained unclear. One might assume, how- able deceleration or even a transitory arrest of the heart ever, that some differences in experimental conditions in response to the Valsalva manoeuvre (VM). Some and/or in the technique of the VM were involved. The years later, Donders (1854) reached the opposite con- next 150 years witnessed thousands of studies on car- diovascular effects of the VM in normal and diseased ∗ Tel.: +37 2 7374370; fax: +37 2 7374372. subjects. The studies took into consideration a number E-mail address: [email protected]. of experimental conditions and factors affecting the 1569-9048/$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.resp.2005.01.003 40 R. Looga / Respiratory Physiology & Neurobiology 147 (2005) 39–49 cardiovascular response (CVR) to the VM. Thus, it was 2. Fundamental mechanisms of the suggested that the VM tests should be performed in cardiovascular response to the Valsalva the morning at least 2 h after a light breakfast. Subjects manoeuvre were requested to abstain from coffee and cigarettes on the previous evening. The room temperature and the Table 1 presents a schematic overview on the fun- subject’s age were to be taken into account (Wieling, damental mechanisms of the CVR to the Valsalva ma- 1993). noeuvre. According to Hamilton et al. (1936), this re- Suprisingly, much less attention has been paid to the sponse is divided into four basic phases. If a final deep effects of the variations in the performance technique breath precedes the VM, as is usually the case, the con- such as volume and rate of the prestrain breath, ex- comitant CVR is treated as phase 0. tent and rate of the strain pressure increase, changes In all phases, the CVR may be divided further into in lung volume and strain pressure, duration of the an earlier subphase (E) and a subsequent later sub- strain period, depth and rate of the poststrain breath- phase (L). As a rule, the subphase E is related to the ing. All these technical conditions have been shown primary mechanical disturbance of arterial blood pres- to affect the patterns of CVR to the VM (Looga, sure by respiratory changes in intrathoracic pressure, 1970). and the subsequent secondary subphase L, to the re- The purpose of the present paper is to review the flex compensatory response to such disturbance. Input cardiovascular effects and their mechanisms of some from the arterial baroreceptors plays the main role in common but mostly neglected, variations in the perfor- this compensatory response (Sharpey-Schafer, 1965; mance technique of the VM. Eckberg, 1980; De Burgh Daly, 1986). However, some Table 1 Fundamental mechanisms of cardiovascular response to the inspiratory Valsalva manoeuvre E: mechanical impact on arterial blood pressure, and L: its subsequent reflex compensation; HR: heart rate; PVR: peripheral vascular resistance; bold, regular, interrupted, and dotted arrow: mechanical, neuroafferent, neuroefferent and hormonal impact on arterial pressure respectively; bold double arrow: competitive counteracting reflex impacts on arterial pressure. R. Looga / Respiratory Physiology & Neurobiology 147 (2005) 39–49 41 other reflex influences, such as a depressor reflex from autonomic activity (Looga, 2001).Thus, in phase II one the slowly adapting pulmonary stretch receptors and a can observe antagonistic influences from two sets of pressor reflex from lung blood vessel mechanorecep- receptors. tors (Looga, 1997) may essentially modify the barore- The cessation of the VM strain evokes a sudden fall ceptor CVR to the VM. in the intrathoracic pressure with a simultaneous me- The fall in arterial pressure in phase 0E seems to chanical fall in arterial blood pressure (Eckberg, 1980; be the direct mechanical effect of decreasing intratho- De Burgh Daly, 1986), phase IIIE. The inhibited venous racic pressure during deep inspiration. The following return is released again and blood flow rushes into lung rise in the heart rate (HR) and peripheral vascular re- vessels, the volume of which increases abruptly due sistance (PVR) present a reflex-compensatory response to the first post-strain deep inspiration. A reflex com- by the arterial baroreceptors and mechanoreceptors of pensatory response follows from arterial baroreceptors the lung vessels to the decrease in blood pressure and and from the mechanoreceptors of the pulmonary blood an increase in venous return. As a result, blood pressure vessels, whereby the existing tachycardia and periph- rises (phase 0L). eral vasoconstriction from phase IIL are augmented still The phase 0L effect links up to the rise of blood further (phase IIIL). pressure in phase IE. The latter is induced by pro- Next, there is an increase in diastolic filling and pelling a quantity of blood into peripheral arteries stroke volume of the heart. As the total peripheral re- from heart and intrathoracic blood vessels under the sistance remains elevated, the ejection of the increased direct mechanical action of the increased intrathoracic stroke volume into the constricted arterial system pro- pressure (Eckberg, 1980; De Burgh Daly, 1986). In the duces a sharp increase in arterial blood pressure, “over- following compensatory phase, IL, the blood pressure shoot” (Sarnoff et al., 1948), phase IVE. The follow- and the heart rate start to fall under the stimulation ing reflex compensatory mechanism originates from of arterial baroreceptors and pulmonary stretch arterial baroreceptors, phase IVL. However, its impact receptors. presents itself mainly in the form of the bradycardia. Phase IL links up to the mechanical decrease of Although the blood pressure falls significantly from the blood pressure in phase IIE. The latter is induced the level of the overshoot, it still remains elevated for a by a considerable decrease in the stroke volume of considerable time. During this period the sympathetic the left ventricle resulting from obstruction of the nerve activity is low (Smith et al., 1996), and the post- venous return by increased intrathoracic pressure (Fox strain hypertensive state is explained by continuing ac- et al., 1966; Smith et al., 1987). Usually phase IIE tion of the adrenal medulla hormones (Sandroni et al., is evident due to its relatively long duration. Me- 2000). chanical hypotension in phase IIE evokes a powerful Due to deep breathing and continuation of the in- compensatory reflex from the arterial baroreceptors: creased venous return in phase IV (Fox et al., 1966; the HR and PVR start to rise, restoring gradually Smith et al., 1987) one might assume a pressor action the baseline level of blood pressure. Under increased from the mechanoreceptors of the lung blood vessels, sympathetic nerve activity (Smith et al., 1996) the which could counteract the baroreceptor effects. On adrenal medulla is activated and large quantities of the other hand, the latter might be supported by the va- epinephrine and norepinephrine are released into the sodilator reflex from the thoracic aorta resulting from circulating blood (Sandroni et al., 2000). However, the increased pulse pressure in phase IV (Gruhzit et al., in the case of a deep inspiration prior to VM, the 1954). Furthermore, the CVR mechanisms in phase IV pulmonary stretch receptors are stimulated as well, may be further modified by changes in blood gases dur- and a significant depressor impact may restrict or ing the VM (Smith and Hatch, 1959; Meyer et al., 1966; suppress the pressor effect from the baroreceptors. Mateika et al., 2002). Then a bradycardic response appears in place of In summary, the mechanisms of CVR to the VM are tachycardia although the peripheral vasoconstriction related to the neurohormonal response of the heart and still continues. Such situations have been observed by blood vessels to the mechanical alterations in arterial weak stimulation of baroreceptors (due to low strain pressure by changes in intrathoracic pressure before, pressure) with the concomitant vagotonic state of during, and after the strain. 42 R. Looga / Respiratory Physiology & Neurobiology 147 (2005) 39–49 There are a number of procedural technical factors that may considerably modify the pattern and magni- tude of CVR to the VM, provided the autonomic effec- tor function is normal.
Recommended publications
  • Course Description
    Instructor: Walter W Lancaster II Off Campus phone: 951-351-1445 x204 Dept phone: NA Cell phone: 951-312-2589 Department of Health and Exercise Science e-mail: [email protected] Spring Quarter, 2016 Alternate e-mail: [email protected] Off Campus Office: La Sierra Academy Office Hours: M-Th 8am – 4pm Consultations by appointment PEAC 106 Scuba Diving Walter Lancaster Location: Health and Exercise Science Classroom 1 (or other assigned instructional locaton) & Pool Tuesdays 6:30pm ~ 9:45pm I. COURSE DESCRIPTION: A. Bulletin Course Description: Course Description Basic SCUBA Diver is an entry-level course for people who have not been previously certified to SCUBA dive, and provides a comprehensive overview of basic concepts that are required to dive safely. Topics include diving equipment, diving physiology, dive planing, environmental considerations, and recognizing and managing risks associated with Open Water diving. Participants who successfully complete the classroom and pool work will qualify for an Open Water certification experience, which must be completed if the student wishes to become a certified diver. Successful completion of the Open Water experience will result in an industry recognized and accepted certification at the level of Basic SCUBA Diver through the National Assocaiton of Underwater Instructors (NAUI). All attendees must be age 16 or older. Students must be able to demonstrate a 10-minute swim/float in water too deep to stand in without the use of swim aids, complete a 200 meter/yard continuous surface swim and demonstrate an underwater (single breath) free dive for a horizontal minimum distance of 25 yards. B. Instructional Materials: Use of the recommended text and Comprehesive Resource Notebook is made available to all students as part of the comprehensive Lab Fee.
    [Show full text]
  • Hyperbaric Oxygen Therapy in Dermatology
    MILITARY DERMATOLOGY IN PARTNERSHIP WITH THE ASSOCIATION OF MILITARY DERMATOLOGISTS Hyperbaric Oxygen Therapy in Dermatology Jonathan P. Jeter, MD; Emily B. Wong, MD Overview of HOT PRACTICE POINTS Hyperbaric oxygen therapy involves sitting or lying in a • Hyperbaric oxygen therapy can be considered for special chamber that allows for controlled levels of oxygen the treatment of failing cutaneous grafts and flaps, (O2) at increased atmospheric pressure, which specifically chronic ulcerations caused by vasculitis or autoim- involves breathing near 100% O2 while inside a mono- mune disorders, and vascular compromise, including place or multiplace chamber5 that is pressurized to greater cutaneous ischemia caused by fillers. than sea level pressure (≥1.4 atmosphere absolute).2 • Hyperbaric oxygen therapy involves 1- to 2-hour treat- A monoplace chamber is designed to treat a single ments, 5 days a week, for as long as 1 month. person (Figure 1);copy a multiplace chamber (Figure 2) accom- 5,6 • Hyperbaric oxygen therapy is safe and well-tolerated, modates as many as 5 to 25 patients. The chambers with few contraindications. The sooner therapy is also accommodate hospital beds and medical attendants, started, the greater the potential for benefit. if needed. Hyperbaric O2 is inhaled through a mask, a tight-fitting hood, or an endotracheal tube, depending on notthe patient’s status.7 Treatment ranges from only 1 or Hyperbaric oxygen therapy (HOT) is a potentially useful technique for 2 iterations for acute conditions to 30 sessions or more for certain dermatologic conditions. We review its indications, dermato- chronic conditions. Individual sessions last 45 minutes to logic applications, and potential complications.
    [Show full text]
  • What Chamber Operators Should Know About Ear Barotrauma (And How to Prevent It) Robert Sheffield, CHT and Kevin “Kip” Posey, CHT / June 2018
    LEARN.HYPERBARICMEDICINE.COM International ATMO Education What Chamber Operators Should Know About Ear Barotrauma (and How to Prevent It) Robert Sheffield, CHT and Kevin “Kip” Posey, CHT / June 2018 INTRODUCTION Ear barotrauma (i.e. “ear block”, “ear squeeze”) is the most common complication of hyperbaric treatment. It occurs when the pressure in the hyperbaric chamber is greater than the pressure in the middle ear. It is prevented by patient assessment, patient education, and the appropriate actions of the chamber operator. The chamber operator has an important role in preventing ear barotrauma in hyperbaric patients. OBJECTIVES At the conclusion of this article, the reader will be able to: Describe the anatomy of the middle ear Explain the mechanism of ear barotrauma Describe 3 techniques to equalize middle ear pressure ANATOMY OF THE MIDDLE EAR The middle ear is an air space that separates the external ear canal from the inner ear. The eardrum, called the tympanic membrane (TM), vibrates when sound enters the ear canal. The vibration is transmitted to a series of bones in the middle ear. These bones transmit vibration to another membrane (the oval window) that separates the air‐filled middle ear from the fluid‐filled inner ear, where sound is sensed in the cochlea. The nasopharynx is the area behind the nose and above the palate. The Eustachian tubes open into this area. Because of the location of the Eustachian tube openings, the same things that cause nasal congestion (e.g. allergies, upper respiratory infection) can cause swelling around the opening of the Eustachian tubes, making it more difficult to equalize pressure in the middle ear.
    [Show full text]
  • Status Epilepticus Due to Cerebral Air Embolism After the Valsalva Maneuver CASE REPORT
    eISSN 2508-1349 J Neurocrit Care 2019;12(1):51-54 https://doi.org/10.18700/jnc.190075 Status epilepticus due to cerebral air embolism after the Valsalva maneuver CASE REPORT Hyun Ji Lyou, MD; Hye Jeong Lee, MD; Grace Yoojin Lee, MD; Received: March 11, 2019 Won-Joo Kim, MD, PhD Revised: May 3, 2019 Accepted: May 27, 2019 Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea Corresponding Author: Won-Joo Kim, MD Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea Tel: +82-2-2019-3324 Fax: +82-2-3462-5904 E-mail: [email protected] Background: Cerebral air embolism is uncommon but potentially causes catastrophic events such as cardiac damage or even death. However, due to a low overall incidence, it may go undiagnosed. Case Report: A 56-year-old man with a medical history of right upper lobectomy due to lung cancer showed changes in mental status after the Valsalva maneuver, followed by status epilepticus during admission. Brain and chest computed tomography showed cerebral air embolism and accidental pneumothorax in the right major fissure. After antiepileptic drug infusion and oxygen therapy, he recov- ered completely. Conclusion: Since cerebral air embolism may result in fatal outcomes, it should be suspected in patients with sudden neurological de- terioration after routine medical procedures. Keywords: Status epilepticus; Embolism, air; Pneumothorax; Valsalva maneuver INTRODUCTION CASE REPORT Cerebral air embolism is a rare but potentially severe complication A 56-year-old man with a medical history of right upper lobectomy of iatrogenic procedures or destructive lung disease, possibly re- due to lung cancer presented to the emergency room with changes sulting in neurological disorders such as encephalopathy, stroke, or in mental status after the Valsalva maneuver during a pulmonary seizure.
    [Show full text]
  • Middle Ear Barotrauma After Hyperbaric Oxygen Therapy - the Role of Insuflation Maneuvers
    DOI: 10.5935/0946-5448.20120032 ORIGINAL ARTICLE International Tinnitus Journal. 2012;17(2):180-5. Middle ear barotrauma after hyperbaric oxygen therapy - the role of insuflation maneuvers Marco Antônio Rios Lima1 Luciano Farage2 Maria Cristina Lancia Cury3 Fayez Bahmad Jr.4 Abstract Objective: To analyze the association of insuflation maneuvers status before hyperbaric oxygen therapy with middle ear barotrauma. Materials and Methods: Fouty-one patients (82 ears) admitted to the Department of Hyperbaric Medicine from May 2011 to July 2012. Assessments occurred: before and after the first session, after sessions with symptoms. During the evaluations were performed: otoscopy with Valsalva and Toynbee maneuvers, video otoscopy and specific questionnaire. Middle ear barotrauma was graduated by the modified Edmond’s scale. Tubal insuflation was classified in Good, Median and Bad according to combined results of Valsalva and Toynbee maneuvers. Inclusion criteria: patients evaluated by an otolaryngologist before and after the first session, with no history of ear disease, who agreed to participate in the research (convenience sample). Results: Of the 82 ears included in the study, 32 (39%) had barotrauma after the first session. The rate of middle ear barotrauma according to tubal insuflation was: 17.9% (Good insuflation) 44.4% (Median insuflation) and 55.6% (Bad insuflation)P ( = 0.013). Conclusion: Positive Valsalva and Toynbee maneuvers before the first session, alone or associated were protective factors for middle ear barotrauma by ear after the first session. Keywords: barotrauma, hyperbaric oxygenation, middle ear ventilation. 1 Health Science School - University of Brasília - Brasília - DF - Brasil. E-mail: [email protected] 2 Health Science School - University of Brasília - Brasília - DF - Brasil.
    [Show full text]
  • The Effect of Valsalva and Toynbee Maneuvers on Tympanometry Parameters in Normal and Retracted Tympanic Membrane
    Global Journal of Otolaryngology ISSN 2474-7556 Research Article Glob J Otolaryngol Volume 14 Issue 4 - April 2018 Copyright © All rights are reserved by Yazeed Ali Alshawi DOI: 10.19080/GJO.2018.14.555896 The Effect of Valsalva and Toynbee Maneuvers on Tympanometry Parameters in Normal and Retracted Tympanic Membrane Yazeed Alshawi1*, Abdulmalik Ismail2, Nora Almegil3 and Zaid almubarak4 1Department of Otology/ Neurotology, king Abdulaziz University Hospital, Saudi Arabia 2Department of Otolaryngology and Head and Neck, Prince Sultan Military Medical City, Riyadh, Saudi Arabia 3Department of Audiology, Security Forces Hospital, Riyadh, Saudi Arabia 4Department of Otolaryngology and Head and Neck, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia Submission: March 26, 2018; Published: April 17, 2018 *Corresponding author: Yazeed Ali alshawi, Senior registrar at Prince Sultan Medical Military Center, Otology/ Neurotology fellow at king Abdulaziz University Hospital, Riyadh, Saudi Arabia, Email: Abstract It plays a major role in equalizing the pressure between the external environment and middle ear and in protecting the middle ear from nasopharyngealThe Eustachian secretions. tube, also Dysfunction known as auditoryof Eustachian tube, tubeis a bony may andcause fibro negative cartilagenous pressure tube to buildup that connects in the middlethe middle ear, earleading to the to nasopharynx. retraction of the pathogenesis of otitis media and in its management. Nowadays, numerous Eustachian tube function tests exist, one of the most commonly usedthe tympanic is tympanometry membrane which or collection may be combinedof fluid in withthe middle Valsalva ear. maneuver The diagnosis and Toynbee of Eustachian maneuver. tube Kumazawa dysfunction et isal. important diagnosed in Eustachian understanding tube pathologies by asking his patients to perform Valsalva and Toynbee maneuvers and took tympanogram measurements for his patients.
    [Show full text]
  • “EARLY and OFTEN - WHEN?” By: George Safirowski
    “EARLY AND OFTEN - WHEN?” by: George Safirowski One of the basic skills that each scuba student must learn early in an open water basic certification course is equalization of pressure on decent. The process of equalization is necessary every time we go diving, since air spaces in the middle ear are of particular importance because even a minor pressure imbalance can result in an injury. The technique involved in preventing ear squeeze is easy to learn, and instructions are very simple - “equalize early and often”. But what does early and often really mean? While teaching hundreds of scuba divers trained and certified by various organizations gave me an opportunity to observe that the majority of newly and many “experienced” divers have a problem deciding when it is early enough, and how often they should equalize. To prevent ear squeeze, a diver must begin the equalization process prior to any sensation of discomfort or pain. Pain is a symptom of tissue damage and swelling taking place in the air passages, further restricting comfortable equalization. Therefore, using pain as an indicator to begin equalization means it is already too late. Tissue damage within the ear also renders itself to ear infections due to the already injured tissue being exposed to the surrounding environment and having little resistance against the soup of microscopic creatures. Often a dive vacation turns out to be a bust caused by external otitis. While diving, there is absolutely no reason to continue with decent if equalization was not successful at a shallower depth. Often peer pressure and lack of buoyancy control are major contributors in equalization difficulties.
    [Show full text]
  • A Water-Filled Body Plethysmograph for the Measurement of Pulmonary Capillary Blood Flow During Changes of Intrathoracic Pressure
    A water-filled body plethysmograph for the measurement of pulmonary capillary blood flow during changes of intrathoracic pressure Yoshikazu Kawakami, … , Harold A. Menkes, Arthur B. DuBois J Clin Invest. 1970;49(6):1237-1251. https://doi.org/10.1172/JCI106337. Research Article A water-filled body plethysmograph was constructed to measure gas exchange in man. As compared to an air-filled plethysmograph, its advantages were greater sensitivity, less thermal drift, and no change from adiabatic to isothermal conditions after a stepwise change of pressure. When five subjects were completely immersed within it and were breathing to the ambient atmosphere, they had a normal heart rate, oxygen consumption, CO2 output, and functional residual capacity. Pulmonary capillary blood flow ([unk]Qc) during and after Valsalva and Mueller maneuvers was 2 calculated from measurements of N2O uptake. Control measurements of [unk]Qc were 2.58 liters/min per m at rest and 3.63 liters/min per m2 after moderate exercise. During the Valsalva maneuver at rest (intrapulmonary pressure: 24, SD 3.0, mm Hg), [unk]Qc decreased from a control of 2.58, SD 0.43, liters/min per m2 to 1.62, SD 0.26, liters/min per m2 with a decrease in pulmonary capillary stroke volume from a control of 42.4, SD 8.8, ml/stroke per m2 to 25.2, SD 5.5, ml/stroke per m2. After release of the Valsalva, there was an overshoot in [unk]Qc averaging +0.78, SD 0.41, liter/min per m2 accompanied by a significant increase in heart rate. Similar changes occurred during and after the Valsalva following moderate exercise.
    [Show full text]
  • Middle-Ear Barotrauma After Hyperbaric Oxygen Therapy
    UHM 2010, Vol. 37, No. 4 – MIDDLE-EAR BAROTRAUMA AFTER HBO2 Middle-ear barotrauma after hyperbaric oxygen therapy JACQUES BESSEREAU 1,2, ALEXIS TABAH 2,3, NICOLAS GENOTELLE 2, ADRIEN FRANÇAIS 3, MATHIEU COULANGE 1, DJILLALI ANNANE 2 1 Hyperbaric Medicine Centre, Pôle RUSH, Sainte-Marguerite Hospital, Marseille, France; 2 Intensive Care Unit and Hyperbaric Medicine, Raymond Poincaré Hospital, Garches, France; 3 INSERM U823; university Grenoble 1 –Albert Bonniot Institute, Grenoble, France CORRESPONDING AUTHOR: Dr. Alexis Tabah – [email protected] ABSTRACT Background: Middle-ear barotrauma (MEB) is one of the most common side effects of hyperbaric oxygen therapy (HBO2). The incidence of MEB has been shown to vary between treatment centers and patients. This study was aimed to determine which patients are at high risk of MEB. Materials and methods: Prospective study including all the patients treated in a multiplace HBO2 chamber between January and December 2005. Scoring of MEB before and after HBO2 by otoscopy was performed using the Haines and Harris classification. Results: We included 130 patients: 53 Males, 37.5 ± 20.5 years old; 76% were treated for CO poisoning, 11% for iatrogenic gas embolism, 12% for decompression sickness and 4% for necrotizing soft tissue infection. 13% were intubated. MEB occurred in 13.6% of the patients (12.4% of the conscious and 24.4% of the intubated patients, p=0.26). Risk factors for MEB were: repetitive treatments and difficulties with pressure equalization. There was no influence of age, sex or mechanical ventilation on the occurrence of MEB. Conclusions: MEB induced by HBO2 occurred in 13.6% of the patients.
    [Show full text]
  • Impairment of Sympathetic Activation During Static Exercise in Patients with Muscle Phosphorylase Deficiency (Mcardle's Disease)
    Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease). S L Pryor, … , L A Bertocci, R G Victor J Clin Invest. 1990;85(5):1444-1449. https://doi.org/10.1172/JCI114589. Research Article Static exercise in normal humans causes reflex increases in muscle sympathetic nerve activity (MSNA) that are closely coupled to the contraction-induced decrease in muscle cell pH, an index of glycogen degradation and glycolytic flux. To determine if sympathetic activation is attenuated when muscle glycogenolysis is blocked due to myophosphorylase deficiency (McArdle's disease), an inborn enzymatic defect localized to skeletal muscle, we now have performed microelectrode recordings of MSNA in four patients with McArdle's disease during static handgrip contraction. A level of static handgrip that more than doubled MSNA in normal humans had no effect on MSNA and caused an attenuated rise in blood pressure in the patients with myophosphorylase deficiency. In contrast, two nonexercise sympathetic stimuli, Valsalva's maneuver and cold pressor stimulation, evoked comparably large increases in MSNA in patients and normals. The principal new conclusion is that defective glycogen degradation in human skeletal muscle is associated with a specific reflex impairment in sympathetic activation during static exercise. Find the latest version: https://jci.me/114589/pdf Impairment of Sympathetic Activation during Static Exercise in Patients with Muscle Phosphorylase Deficiency (McArdle's Disease) Susan L. Pryor,* Steven F. Lewis,* Ronald G. Haller,1 Loren A. Bertocci,11 and Ronald G. Victor* Departments of*Internal Medicine (Cardiology Division), tPhysiology, §Neurology, and I"Radiology, *the Harry S.
    [Show full text]
  • Diving Physiology Sources
    Diving Physiology Sources • Joiner, J.T. (ed.). 2001. NOAA Diving Manual - Diving for Science and Technology, Fourth Edition. Best Publishing Company, Flagstaff, AZ. Objectives • After completing this training module you will be able to: – Describe the basic systems of the human body – Describe the process, mechanics, and control of respiration – Describe circulation, blood transport of oxygen and carbon dioxide, tissue gas exchange, and tissue use of oxygen Objectives • After completing this training module you will be able to: – List signs & symptoms and prevention / treatment strategies of respiratory problems associated with hypoxia, carbon dioxide toxicity, hyperventilation, shallow water blackout, carbon monoxide poisoning, excessive resistance to breathing, and lipoid pneumonia – Describe direct effects of pressure on descent associated with the ears, sinuses, lungs, and eyes Objectives • After completing this training module you will be able to: – Describe direct effects of pressure during ascent including reverse block, pneumothorax, mediastinal and subcutaneous emphysema, and arterial gas embolism – List four ways to help prevent lung overexpansion injuries Objectives • After completing this training module you will be able to: – Explain indirect effects of pressure during descent including inert gas narcosis, high pressure nervous syndrome, CNS oxygen toxicity, and whole-body oxygen toxicity – Differentiate between hypothermia and hyperthermia; listing signs & symptoms and prevention/management strategies Objectives • After
    [Show full text]
  • Diving Physiology 3
    Diving Physiology 3 SECTION PAGE SECTION PAGE 3.0 GENERAL ...................................................3- 1 3.3.3.3 Oxygen Toxicity ........................3-21 3.1 SYSTEMS OF THE BODY ...............................3- 1 3.3.3.3.1 CNS: Central 3.1.1 Musculoskeletal System ............................3- 1 Nervous System .........................3-21 3.1.2 Nervous System ......................................3- 1 3.3.3.3.2 Lung and 3.1.3 Digestive System.....................................3- 2 “Whole Body” ..........................3-21 3.2 RESPIRATION AND CIRCULATION ...............3- 2 3.2.1 Process of Respiration ..............................3- 2 3.3.3.3.3 Variations In 3.2.2 Mechanics of Respiration ..........................3- 3 Tolerance .................................3-22 3.2.3 Control of Respiration..............................3- 4 3.3.3.3.4 Benefits of 3.2.4 Circulation ............................................3- 4 Intermittent Exposure..................3-22 3.2.4.1 Blood Transport of Oxygen 3.3.3.3.5 Concepts of and Carbon Dioxide ......................3- 5 Oxygen Exposure 3.2.4.2 Tissue Gas Exchange.....................3- 6 Management .............................3-22 3.2.4.3 Tissue Use of Oxygen ....................3- 6 3.3.3.3.6 Prevention of 3.2.5 Summary of Respiration CNS Poisoning ..........................3-22 and Circulation Processes .........................3- 8 3.2.6 Respiratory Problems ...............................3- 8 3.3.3.3.7 The “Oxygen Clock” 3.2.6.1 Hypoxia .....................................3-
    [Show full text]