HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

Total Page:16

File Type:pdf, Size:1020Kb

HIV Genome-Wide Protein Associations: a Review of 30 Years of Research crossmark HIV Genome-Wide Protein Associations: a Review of 30 Years of Research Guangdi Li,a,b Erik De Clercqb Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, Chinaa; KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgiumb Downloaded from SUMMARY ..................................................................................................................................................680 INTRODUCTION ............................................................................................................................................680 LITERATURE SELECTION....................................................................................................................................682 VIRAL ENTRY................................................................................................................................................684 GP120-GP41 Interaction ..................................................................................................................................684 GP41Env-MatrixGag Interaction ............................................................................................................................684 GP120-Tat Interaction ....................................................................................................................................686 http://mmbr.asm.org/ REVERSE TRANSCRIPTION..................................................................................................................................686 RT-Integrase Interaction ..................................................................................................................................688 RT-Nucleocapsid Interaction .............................................................................................................................688 RT-Vif Interaction .........................................................................................................................................690 RT-Tat Interaction.........................................................................................................................................690 RT-Nef Interaction ........................................................................................................................................690 Protease-Tat Interaction ..................................................................................................................................690 RT-tRNALys3-Vpr Association ..............................................................................................................................690 VIRAL INTEGRATION........................................................................................................................................690 Integrase-RT Interaction ..................................................................................................................................692 Integrase-Rev Interaction.................................................................................................................................692 on June 29, 2016 by KU Leuven University Library Integrase-Matrix Interaction ..............................................................................................................................692 Matrix-Vpr Interaction ....................................................................................................................................692 Integrase-Nef Interaction .................................................................................................................................695 Integrase-dsDNA-Vpr Association ........................................................................................................................695 Integrase-dsDNA-Nucleocapsid Association .............................................................................................................695 Integrase-TNPO3/CypA-Capsid Association ..............................................................................................................695 VIRAL TRANSCRIPTION AND TRANSLATION...............................................................................................................695 Tat-Rev Interaction .......................................................................................................................................696 Tat-Vpr Interaction........................................................................................................................................697 Tat-Nef Interaction .......................................................................................................................................697 Tat-Nucleocapsid Interaction.............................................................................................................................697 Vif-Vpr Interaction ........................................................................................................................................697 Rev-CRM1-MatrixGag Association .........................................................................................................................697 Rev-CG1-Vpr Association .................................................................................................................................698 Tat-p300/SWI/SNF-Integrase Association ................................................................................................................698 VIRAL ASSEMBLY AND BUDDING ..........................................................................................................................698 MatrixGag-GP41Env Interaction ............................................................................................................................698 NCGag-Vif Interaction .....................................................................................................................................699 NCGag-Vpr Interaction ....................................................................................................................................700 p6Gag-Vpr Interaction.....................................................................................................................................700 p6Gag-Vpx Interaction ....................................................................................................................................700 GP41Env-Nef Interaction ..................................................................................................................................700 Gag-RT Interaction .......................................................................................................................................700 MatrixGag-RNA-NCGag Association ........................................................................................................................701 (continued) Published 29 June 2016 Citation Li G, De Clercq E. 2016. HIV genome-wide protein associations: a review of 30 years of research. Microbiol Mol Biol Rev 80:679–731. doi:10.1128/MMBR.00065-15. Address correspondence to Guangdi Li, [email protected], or Erik De Clercq, [email protected]. Supplemental material for this article may be found at http://dx.doi.org/10.1128 /MMBR.00065-15. Copyright © 2016, American Society for Microbiology. All Rights Reserved. September 2016 Volume 80 Number 3 Microbiology and Molecular Biology Reviews mmbr.asm.org 679 Li and De Clercq CapsidGag-LysRS-Vpr Association .........................................................................................................................701 Gag-AIP1-Nef .............................................................................................................................................701 NCGag-Tsg101/AIP1-P6Gag Association ...................................................................................................................701 Vif-APOBEC3G-Integrase Association.....................................................................................................................702 Vif-MAPK/HCK-Nef Association ...........................................................................................................................702 Vpu-CD4-GP120Env Association ..........................................................................................................................702 Vpu-Tetherin/CD4-Nef Association.......................................................................................................................703 Vpu-CK2-Rev Association.................................................................................................................................703 Vpu-UBP-MatrixGag Association...........................................................................................................................703 VIRAL MATURATION .......................................................................................................................................703 Protease-Gag/GagPol Interaction ........................................................................................................................705 Downloaded from Protease-Vif Interaction...................................................................................................................................705
Recommended publications
  • Identification of Hsc70 As an Influenza Virus Matrix Protein (M1)
    FEBS Letters 580 (2006) 5785–5790 Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle Ken Watanabea, Takayuki Fusea, Issay Asanoa, Fujiko Tsukaharab, Yoshiro Marub, Kyosuke Nagatac, Kaio Kitazatoa, Nobuyuki Kobayashia,* a Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan b Department of Pharmacology, Tokyo Women’s Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan c Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan Received 22 August 2006; revised 13 September 2006; accepted 15 September 2006 Available online 27 September 2006 Edited by Felix Wieland nuclear export signal (NES), thus mechanism of M1-mediated Abstract Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and bud- nuclear export of vRNP is still not well understood. ding. We identified heat shock cognate protein 70 (Hsc70) as a We herein identify heat shock cognate protein 70 (Hsc70), a M1 binding protein by immunoprecipitation and MALDI-TOF constitutive form of Hsp70 family protein, as an host factor(s) MS. The C terminal domain of M1 interacts with Hsc70. We which bind to M1 in infected cells by matrix-assisted laser found that Hsc70 does not correlate with the transport of M1 desorption ionization-time of flight mass spectrometry (MAL- to the nucleus, however, it does inhibit the nuclear export of DI-TOF MS). Heat shock proteins (Hsps) were induced by M1 and NP, thus resulting in the inhibition of viral production.
    [Show full text]
  • Distinct Contributions of Different Domains Within the HIV-1 Gag
    viruses Article Distinct Contributions of Different Domains within the HIV-1 Gag Polyprotein to Specific and Nonspecific Interactions with RNA Tomas Kroupa , Siddhartha A. K. Datta and Alan Rein * HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] (T.K.); [email protected] (S.A.K.D.) * Correspondence: [email protected] Received: 24 February 2020; Accepted: 31 March 2020; Published: 2 April 2020 Abstract: Viral genomic RNA is packaged into virions with high specificity and selectivity. However, in vitro the Gag specificity towards viral RNA is obscured when measured in buffers containing physiological salt. Interestingly, when the binding is challenged by increased salt concentration, the addition of competing RNAs, or introducing mutations to Gag protein, the specificity towards viral RNA becomes detectable. The objective of this work was to examine the contributions of the individual HIV-1 Gag polyprotein domains to nonspecific and specific RNA binding and stability of the initial protein-RNA complexes. Using a panel of Gag proteins with mutations disabling different Gag-Gag or Gag-RNA interfaces, we investigated the distinct contributions of individual domains which distinguish the binding to viral and nonviral RNA by measuring the binding of the proteins to RNAs. We measured the binding affinity in near-physiological salt concentration, and then challenged the binding by increasing the ionic strength to suppress the electrostatic interactions and reveal the contribution of specific Gag–RNA and Gag–Gag interactions. Surprisingly, we observed that Gag dimerization and the highly basic region in the matrix domain contribute significantly to the specificity of viral RNA binding.
    [Show full text]
  • Allosteric Integrase Inhibitor Potency Is Determined Through the Inhibition of HIV-1 Particle Maturation
    Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation Kellie A. Juradoa, Hao Wanga, Alison Slaughterb, Lei Fengb, Jacques J. Kesslb, Yasuhiro Koha, Weifeng Wanga, Allison Ballandras-Colasa, Pratiq A. Patelc, James R. Fuchsc, Mamuka Kvaratskheliab, and Alan Engelmana,1 aDepartment of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215; and bCenter for Retrovirus Research and Comprehensive Cancer Center and cDivision of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 Edited by Alan R. Rein, National Cancer Institute, Frederick, MD, and accepted by the Editorial Board April 1, 2013 (received for review January 14, 2013) Integration is essential for HIV-1 replication, and the viral integrase HIV-1 preferentially integrates along the bodies of active genes (IN) protein is an important therapeutic target. Allosteric IN inhib- (6), a trait that is largely attributable to an interaction between itors (ALLINIs) that engage the IN dimer interface at the binding site IN and the host protein lens epithelium-derived growth factor for the host protein lens epithelium-derived growth factor (LEDGF)/ (LEDGF)/transcriptional coactivator p75 (reviewed in refs. 7 and transcriptional coactivator p75 are an emerging class of small mole- 8). LEDGF/p75 functions as a bimodal tether during integration: cule antagonists. Consistent with the inhibition of a multivalent drug elements within its N-terminal region confer constitutive binding to target, ALLINIs display steep antiviral dose–response curves ex vivo. chromatin, whereas a downstream IN-binding domain (IBD) binds ALLINIs multimerize IN protein and concordantly block its assembly lentiviral IN proteins (9, 10).
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Assessment of the Interaction Between the Human
    VARIATIONS IN THE V3 CROWN OF HIV-1 ENVELOPE IMPACT AFFINITY FOR CCR5 AND AFFECT ENTRY AND REPLICATIVE FITNESS By MICHAEL ANDREW LOBRITZ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Eric J. Arts, Ph.D. Department of Molecular Biology and Microbiology CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Chapter 1: Introduction........................................................................................................................16 1.A. HIV and AIDS..............................................................................................17 1.B. Retroviruses: Structure, Organization, and Replication...............................20 1.B.1. HIV-1 Genome...............................................................................20 1.B.2. HIV-1 Particle................................................................................23
    [Show full text]
  • Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy
    Viruses 2010, 2, 2078-2095; doi:10.3390/v2092078 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy Eike Steinmann and Thomas Pietschmann * TWINCORE †, Division of Experimental Virology, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany; E-Mail: [email protected] † TWINCORE is a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI). * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-511-220027-130; Fax: +49-511-220027-139. Received: 22 July 2010; in revised form: 2 September 2010 / Accepted: 6 September 2010 / Published: 27 September 2010 Abstract: The hepatitis C virus (HCV), a hepatotropic plus-strand RNA virus of the family Flaviviridae, encodes a set of 10 viral proteins. These viral factors act in concert with host proteins to mediate virus entry, and to coordinate RNA replication and virus production. Recent evidence has highlighted the complexity of HCV assembly, which not only involves viral structural proteins but also relies on host factors important for lipoprotein synthesis, and a number of viral assembly co-factors. The latter include the integral membrane protein p7, which oligomerizes and forms cation-selective pores. Based on these properties, p7 was included into the family of viroporins comprising viral proteins from multiple virus families which share the ability to manipulate membrane permeability for ions and to facilitate virus production. Although the precise mechanism as to how p7 and its ion channel function contributes to virus production is still elusive, recent structural and functional studies have revealed a number of intriguing new facets that should guide future efforts to dissect the role and function of p7 in the viral replication cycle.
    [Show full text]
  • Replication of HIV-1 Envelope Protein Cytoplasmic Domain Variants in Permissive and Restrictive Cells T
    Virology 538 (2019) 1–10 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Replication of HIV-1 envelope protein cytoplasmic domain variants in permissive and restrictive cells T ∗ August O. Staubus, Ayna Alfadhli, Robin Lid Barklis, Eric Barklis Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA ARTICLE INFO ABSTRACT Keywords: Wild type (WT) HIV-1 envelope (Env) protein cytoplasmic tails (CTs) appear to be composed of membrane- HIV-1 proximal, N-terminal unstructured regions, and three C-terminal amphipathic helices. Previous studies have Replication shown that WT and CT-deleted (ΔCT) Env proteins are incorporated into virus particles via different mechan- Envelope protein isms. WT Env proteins traffic to cell plasma membranes (PMs), are rapidly internalized, recycle to PMs, and are Cytoplasmic tail incorporated into virions in permissive and restrictive cells in a Gag matrix (MA) protein-dependent fashion. In contrast, previously described ΔCT proteins do not appear to be internalized after their arrival to PMs, and do not require MA, but are only incorporated into virions in permissive cell lines. We have analyzed a new set of HIV-1 CT variants with respect to their replication in permissive and restrictive cells. Our results provide novel details as to how CT elements regulate HIV-1 Env protein function. 1. Introduction et al., 2018; Ohno et al., 1997; Wyss et al., 2001). Internalized Env proteins either are shunted off to lysosomes for degradation, or return The pathways by which HIV-1 envelope (Env) proteins become in- to PMs on recycling endosomes in a pathway that is dependent, in corporated into virions are complicated and incompletely elucidated certain cell types, on the Rab11 coupling protein FIP1C (Qi et al., 2013, (Checkley et al., 2011).
    [Show full text]
  • An Anti-Cancer Binary System Activated by Bacteriophage HK022 Integrase
    bioRxiv preprint doi: https://doi.org/10.1101/147736; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An anti-cancer binary system activated by bacteriophage HK022 Integrase Amer Elias, Itay Spector1, Natasha Gritsenko, Yael Zilberstein2, Rena Gorovits3, Gali Prag, Mikhail Kolot* Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel 1 Histospeck, Rishon LeZion PO Box: 75321, Israel 2 Sackler cellular & molecular imaging center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel 3 Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel *Corresponding author: Mikhail Kolot Tel-Aviv University Department of Biochemistry & Molecular Biology Tel-Aviv 69978 Israel Tel.: +972-3-6406695 Fax: +972-3-6406834 E-mail: [email protected] Key words: DTA toxin, cancer therapy, binary system, site-specific recombination, bacteriophage HK022; Integrase, lung cancer, gene delivery 1 bioRxiv preprint doi: https://doi.org/10.1101/147736; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Cancer gene therapy is a great promising tool for cancer therapeutics due to the specific targeting based on the cancerous gene expression background. Binary systems based on site- specific recombination are one of the most effective potential approaches for cancer gene therapy.
    [Show full text]
  • Phosphorylation of the M2 Protein of Influenza a Virus Is Not Essential for Virus Viability
    VIROLOGY 252, 54±64 (1998) ARTICLE NO. VY989384 Phosphorylation of the M2 Protein of Influenza A Virus Is Not Essential for Virus Viability Joanne M. Thomas, Mark P. Stevens, Neil Percy,1 and Wendy S. Barclay2 School of Animal and Microbial Sciences, University of Reading, Whiteknights, UK RG6 6AJ Received May 14, 1998; returned to author for revision June 12, 1998; accepted August 18, 1998 M2 is a minor component of the influenza A virus envelope. The cytoplasmic tail of the M2 protein is posttranslationally modified in the infected cell by palmitylation and phosphorylation. The primary site for phosphorylation of the M2 cytoplasmic tail is serine 64, which is highly conserved yet not required for the activity of the M2 ion channel. Using an exogenous incorporation assay, we have shown that incorporation of M2 into virus particles is type-specific and does not require phosphorylation of the cytoplasmic tail. In addition, phosphorylation of the cytoplasmic tail is not required for the directional transport of M2 in polarized MDCK cells. Using a reverse genetics and reassortment procedure, we generated a virus (Ra) specifically mutated in segment 7 such that the M2 cytoplasmic tail could no longer be phosphorylated. The virus was found to grow as well as wild-type virus in tissue culture and in eggs, was stable on passage in these systems, and possessed no second-site mutations in the engineered RNA segment. In vivo Ra replicated in Balb/c mice at least as well as the parent strain A/WSN/33. These studies indicate that phosphorylation of the M2 cytoplasmic tail is not required for in vitro or in vivo replication of influenza A virus.
    [Show full text]
  • 693.Full.Pdf
    Vol. 4, 693-696, Marc/i /998 Clinical Cancer Research 693 Inhibition of Cell Growth and Telomerase Activity of Breast Cancer Cells in Vitro by 3’-Azido-3’-deoxythymidine1 Stella M. Melana, James F. Holland, and target for cancer treatment (9). Recently, the effect of AZT on Beatriz G-T. Pogo2 Chinese hamster ovary cells that display telomerase activity was investigated. AZT was preferentially incorporated into telomeric Department of Medicine, Division of Neoplastic Diseases [S. M. M.. J. F. H.. B. G-T. P.]. and Department of Microbiology [B. G-T. P.]. DNA and Z-DNA-containing regions (2). AZT. alone or in Mount Sinai School of Medicine, New York, New York 10029 combination with other antimetabolites, also inhibited the growth of human bladder cancer and colon cancer cell lines (10). Furthermore, AZT was shown to cause progressive te- ABSTRACT lomere shortening in immortalized B and T human lymphocytic The effect of zidovudine (3’-azido-3’-deoxythymidine; cell lines ( 1 1 ). Taken together. these results have stimulated AZT) was investigated in four breast cancer cell lines, a T4 further research on the effect of AZT on cancer cells. We have, cell leukemia, and a normal breast cell line in vitro. AZT therefore, investigated the effect of AZT on breast cancer cells inhibited the growth of all tumoral cell lines, but it did so in that possess tebomerase activity. The results indicated that AZT a wide range of concentrations. The growth of a normal inhibits breast cancer cell growth. anchorage-independent breast cell line was also inhibited, although it required a growth.
    [Show full text]
  • Distribution of Prophages in the Oenococcus Oeni Species
    microorganisms Article Distribution of Prophages in the Oenococcus oeni Species Olivier Claisse , Amel Chaïb, Fety Jaomanjaka ,Cécile Philippe, Yasma Barchi, Patrick M. Lucas and Claire Le Marrec * Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; [email protected] (O.C.); [email protected] (A.C.); [email protected] (F.J.); [email protected] (C.P.); [email protected] (Y.B.); [email protected] (P.M.L.) * Correspondence: [email protected]; Tel.: +33-557-575-831 Abstract: Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.
    [Show full text]
  • Tetherin-Mediated Restriction of Filovirus Budding Is Antagonized by the Ebola Glycoprotein
    Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein Rachel L. Kaletsky, Joseph R. Francica, Caroline Agrawal-Gamse, and Paul Bates1 Department of Microbiology, School of Medicine, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 Edited by Stephen P. Goff, Columbia University College of Physicians and Surgeons, New York, NY, and approved December 19, 2008 (received for review October 31, 2008) Mammalian cells employ numerous innate cellular mechanisms to Ebola Zaire is a highly pathogenic negative-sense RNA virus inhibit viral replication and spread. Tetherin, also known as Bst-2 that causes severe hemorrhagic disease. Ebola belongs to the or CD317, is a recently identified, IFN-induced, cellular response family Filoviridae, whose members, the Ebola and Marburg factor that blocks release of HIV-1 and other retroviruses from viruses, produce filamentous virions. Expression of the Ebola infected cells. The means by which tetherin retains retroviruses on matrix protein, VP40, alone in mammalian cells produces fila- the cell surface, as well as the mechanism used by the HIV-1 mentous virus-like particles (VLPs) that bud from the cell accessory protein Vpu to antagonize tetherin function and pro- surface and structurally resemble infectious Ebola virions (6, 7). mote HIV-1 release, are unknown. Here, we document that tetherin The viral glycoprotein (GP) forms the surface spikes seen in the functions as a broadly acting antiviral factor by demonstrating that viral envelope membrane. Coexpression of Ebola GP with VP40 both human and murine tetherin potently inhibit the release of the produces VLPs that incorporate GP, resemble authentic Ebola filovirus, Ebola, from the surface of cells.
    [Show full text]