Virus Entry, Assembly, Budding, and Membrane Rafts Nathalie Chazal, Denis Gerlier

Total Page:16

File Type:pdf, Size:1020Kb

Virus Entry, Assembly, Budding, and Membrane Rafts Nathalie Chazal, Denis Gerlier Virus Entry, Assembly, Budding, and Membrane Rafts Nathalie Chazal, Denis Gerlier To cite this version: Nathalie Chazal, Denis Gerlier. Virus Entry, Assembly, Budding, and Membrane Rafts. Microbi- ology and Molecular Biology Reviews, American Society for Microbiology, 2003, 67 (2), pp.226-237. 10.1128/MMBR.67.2.226-237.2003. hal-02147208 HAL Id: hal-02147208 https://hal.archives-ouvertes.fr/hal-02147208 Submitted on 7 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2003, p. 226–237 Vol. 67, No. 2 1092-2172/03/$08.00ϩ0 DOI: 10.1128/MMBR.67.2.226–237.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Virus Entry, Assembly, Budding, and Membrane Rafts Nathalie Chazal1* and Denis Gerlier2 Immunologie-Virologie, EA 3038, Universite´Paul Sabatier, 31062 Toulouse,1 and Immunite´& Infections Virales, CNRS-UCBL UMR 5537, IFR Laennec, 69372 Lyon Cedex 08,2 France INTRODUCTION .......................................................................................................................................................226 DEFINITION OF RAFTS..........................................................................................................................................226 Composition of Rafts..............................................................................................................................................226 Functions of Rafts...................................................................................................................................................227 RAFTS AS PLATFORMS FOR VIRUS ENTRY ....................................................................................................227 Nonenveloped Viruses ............................................................................................................................................227 Downloaded from Enveloped Viruses...................................................................................................................................................228 RAFTS AS PLATFORMS FOR VIRUS ASSEMBLY ............................................................................................229 Nonenveloped Viruses ............................................................................................................................................229 Enveloped Viruses...................................................................................................................................................229 RAFTS AS PLATFORMS FOR VIRUS BUDDING ..............................................................................................232 Gateway for Budding Viruses................................................................................................................................233 Recruitment of Cellular Machinery Needed for Virus Budding ......................................................................233 CONCLUDING REMARKS AND PROSPECTS ...................................................................................................233 ACKNOWLEDGMENTS ...........................................................................................................................................234 REFERENCES ............................................................................................................................................................234 http://mmbr.asm.org/ INTRODUCTION organized in microdomains or rafts in the ordered rigid liquid crystal state (L ), distinct from the disordered fluid liquid Specific microdomains of the plasma membrane called rafts o phase membranes (L ) of the surrounding phospholipids (16, appear to be involved in many biological events such as bio- c 62). The tight packing organization of lipid rafts confers their synthetic traffic, endocytic traffic, and the signal transduction resistance to some detergents, such as the nonionic detergent pathway. Among pathogens, viruses, which are obligate intra- Triton X-100 (TX-100) at low temperature, and allows their cellular parasites, are confronted with the plasma membrane purification from low-density fractions after flotation in a su- during their life cycle. They have to enter their host cells by crose gradient. In cell plasma membranes, a similar organiza- on June 4, 2019 by guest fusion, permeation, or endocytic vesicle discharge and to exit tion of lipids is likely to occur, and after solubilization in them by budding or membrane disruption. TX-100 at 4°C, membrane microdomains rich in cholesterol In this review, we focus on data supporting the involvement and sphingolipids can be similarly isolated by flotation. These of membrane rafts in the virus replication cycle, their role as a microdomains were given various names such as detergent- viral entry site, a platform for the assembly of viral compo- resistant membrane (17, 38), detergent insoluble glycolipid- nents, and a scaffold for the budding of virus from infected enriched complex (48), or Triton-insoluble floating fraction cells. The elucidation of these interactions requires a detailed (48) and are now called membrane rafts. The detergent resis- understanding of raft structures and dynamics. tance of rafts is critically dependent on the presence of cho- lesterol. DEFINITION OF RAFTS In addition to biochemical fractionation, several lines of Composition of Rafts evidence support the in vivo existence of rafts (30, 38, 55). Their in vivo size has been estimated to be between 25 and 700 Although their existence has been debated, the presence of nm by using fluorescence resonance energy transfer micros- specific microdomains into the biological membranes is now a copy and single-molecule-tracking microscopy (55, 94, 104, largely accepted concept (106). According to this concept, the 116). Many, but not all, proteins anchored to the membrane by microdomains have been named “rafts” because they can be a lipid moiety associate with membrane rafts. They include the seen as floating device within the “fluid mosaic” lipid sea of the glycosylphosphatidylinositol (GPI)-anchored proteins, which Singer and Nicholson model (108). In model membranes made are located on the extracellular leaflet, and palmitoylated or of a pure phospholipid-sphingolipid mixture, sphingolipids doubly acetylated proteins, which are enriched in the inner tend to pack together in microdomains separate from phos- cytoplasmic leaflet. However, geranylated proteins are ex- pholipids because the former have long, largely saturated acyl cluded from rafts (see references 48, 105, and 107 for reviews). chains. In the presence of cholesterol, the sphingolipids are Several data point to the existence of different subsets of rafts depending on the combinatorial association of different sphingolipid species with cholesterol and protein contents (72, * Corresponding author. Mailing address: Immuno-Virologie. EA 3038. Universite´Paul Sabatier, 118 Route de Narbonne, 31062 Tou- 104). One particular membrane raft subset is caveolae. Present louse, France. Phone: (33) 5 61 55 86 06. Fax: (33) 5 61 55 86 06. in many mammalian cells except lymphocytes and neurons, E-mail: [email protected]. caveolae are 50- to 70-nm plasma membrane invaginations 226 VOL. 67, 2003 VIRUS ENTRY, ASSEMBLY, BUDDING, AND RAFTS 227 which are surrounded by a striated coat made of the 22-kDa more than one way. Increasing evidence indicates that viruses, caveolins tightly bound to cholesterol (77). Likewise, some including nonenveloped viruses, can use specific membranes bona fide membrane rafts are soluble in 1% TX-100 yet insol- microdomains to penetrate the host cell. uble in a lower concentration of TX-100 or in other nonionic detergents, e.g., Brij or Lubrol (98). Several techniques to study and characterize membrane rafts Nonenveloped Viruses have been described in the literature. The simplest one is to collect the pellet from a cell extract solubilized with 1% TX- After attachment to cell surface receptors, the bound cap- 100 at 4°C and centrifuged at 10,000 ϫ g. This technique is not sids of nonenveloped viruses are internalized mostly if not reliable because only the “heaviest” raft structures, which are exclusively by invagination of the plasma membrane and intra- contaminated with unsoluble material such as protein aggre- cytoplasmic vesiculation. The involvement of membrane rafts gates, are collected. The classical biochemical experiment in- in mediating this process has been highlighted for several vi- volves flotation on a density (sucrose or iodixanol) gradient, ruses. The most convincing evidence has been provided for with the cell extract being loaded at the bottom of the gradient. simian virus 40 (SV40), a member of the Papovaviridae, and Downloaded from The quality of the separation should be checked using bona echovirus type 1 (EV1), a member of the Picornaviridae, which fide raft and nonraft markers. The alternative approach is to use caveolae for internalization and transport to the perinu- study the colocalization of
Recommended publications
  • Identification of Hsc70 As an Influenza Virus Matrix Protein (M1)
    FEBS Letters 580 (2006) 5785–5790 Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle Ken Watanabea, Takayuki Fusea, Issay Asanoa, Fujiko Tsukaharab, Yoshiro Marub, Kyosuke Nagatac, Kaio Kitazatoa, Nobuyuki Kobayashia,* a Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan b Department of Pharmacology, Tokyo Women’s Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan c Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan Received 22 August 2006; revised 13 September 2006; accepted 15 September 2006 Available online 27 September 2006 Edited by Felix Wieland nuclear export signal (NES), thus mechanism of M1-mediated Abstract Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and bud- nuclear export of vRNP is still not well understood. ding. We identified heat shock cognate protein 70 (Hsc70) as a We herein identify heat shock cognate protein 70 (Hsc70), a M1 binding protein by immunoprecipitation and MALDI-TOF constitutive form of Hsp70 family protein, as an host factor(s) MS. The C terminal domain of M1 interacts with Hsc70. We which bind to M1 in infected cells by matrix-assisted laser found that Hsc70 does not correlate with the transport of M1 desorption ionization-time of flight mass spectrometry (MAL- to the nucleus, however, it does inhibit the nuclear export of DI-TOF MS). Heat shock proteins (Hsps) were induced by M1 and NP, thus resulting in the inhibition of viral production.
    [Show full text]
  • Zinc and Copper Ions Differentially Regulate Prion-Like Phase
    viruses Article Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates Anne Monette 1,* and Andrew J. Mouland 1,2,* 1 Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada 2 Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada * Correspondence: [email protected] (A.M.); [email protected] (A.J.M.) Received: 2 September 2020; Accepted: 12 October 2020; Published: 18 October 2020 Abstract: Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive.
    [Show full text]
  • Distinct Contributions of Different Domains Within the HIV-1 Gag
    viruses Article Distinct Contributions of Different Domains within the HIV-1 Gag Polyprotein to Specific and Nonspecific Interactions with RNA Tomas Kroupa , Siddhartha A. K. Datta and Alan Rein * HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] (T.K.); [email protected] (S.A.K.D.) * Correspondence: [email protected] Received: 24 February 2020; Accepted: 31 March 2020; Published: 2 April 2020 Abstract: Viral genomic RNA is packaged into virions with high specificity and selectivity. However, in vitro the Gag specificity towards viral RNA is obscured when measured in buffers containing physiological salt. Interestingly, when the binding is challenged by increased salt concentration, the addition of competing RNAs, or introducing mutations to Gag protein, the specificity towards viral RNA becomes detectable. The objective of this work was to examine the contributions of the individual HIV-1 Gag polyprotein domains to nonspecific and specific RNA binding and stability of the initial protein-RNA complexes. Using a panel of Gag proteins with mutations disabling different Gag-Gag or Gag-RNA interfaces, we investigated the distinct contributions of individual domains which distinguish the binding to viral and nonviral RNA by measuring the binding of the proteins to RNAs. We measured the binding affinity in near-physiological salt concentration, and then challenged the binding by increasing the ionic strength to suppress the electrostatic interactions and reveal the contribution of specific Gag–RNA and Gag–Gag interactions. Surprisingly, we observed that Gag dimerization and the highly basic region in the matrix domain contribute significantly to the specificity of viral RNA binding.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Structural Organization of a Filamentous Influenza a Virus
    Structural organization of a filamentous influenza A virus Lesley J. Calder, Sebastian Wasilewski, John A. Berriman1, and Peter B. Rosenthal2 Division of Physical Biochemistry, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom Edited* by Robert A. Lamb, Northwestern University, Evanston, IL, and approved April 27, 2010 (received for review February 26, 2010) Influenza is a lipid-enveloped, pleomorphic virus. We combine electron HA trimer in the neutral pH conformation (9), proteolytic frag- cryotomography and analysis of images of frozen-hydrated virions ments of the HA in the low pH conformation (10, 11), and the NA to determine the structural organization of filamentous influenza A tetramer (12, 13) have provided a molecular understanding of the virus. Influenza A/Udorn/72 virions are capsule-shaped or filamentous function of these proteins. particles of highly uniform diameter. We show that the matrix layer Further understanding of the virus life cycle requires 3D studies adjacent to the membrane is an ordered helix of the M1 protein and its of ultrastructure that can identify the specific molecular inter- close interaction with the surrounding envelope determines virion actions that govern virus self-assembly. In addition, ultrastructural morphology. The ribonucleoprotein particles (RNPs) that package the changes that are essential to membrane fusion and virion disas- genome segments form a tapered assembly at one end of the virus sembly during cell entry remain to be described. Electron cry- interior. The neuraminidase, which is present in smaller numbers than omicroscopy of influenza virions that are vitrified by rapid plunge- the hemagglutinin, clusters in patches and are typically present at the freezing (14–17) shows contrast from virion structures themselves end of the virion opposite to RNP attachment.
    [Show full text]
  • Assessment of the Interaction Between the Human
    VARIATIONS IN THE V3 CROWN OF HIV-1 ENVELOPE IMPACT AFFINITY FOR CCR5 AND AFFECT ENTRY AND REPLICATIVE FITNESS By MICHAEL ANDREW LOBRITZ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Eric J. Arts, Ph.D. Department of Molecular Biology and Microbiology CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Chapter 1: Introduction........................................................................................................................16 1.A. HIV and AIDS..............................................................................................17 1.B. Retroviruses: Structure, Organization, and Replication...............................20 1.B.1. HIV-1 Genome...............................................................................20 1.B.2. HIV-1 Particle................................................................................23
    [Show full text]
  • Replication of HIV-1 Envelope Protein Cytoplasmic Domain Variants in Permissive and Restrictive Cells T
    Virology 538 (2019) 1–10 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Replication of HIV-1 envelope protein cytoplasmic domain variants in permissive and restrictive cells T ∗ August O. Staubus, Ayna Alfadhli, Robin Lid Barklis, Eric Barklis Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA ARTICLE INFO ABSTRACT Keywords: Wild type (WT) HIV-1 envelope (Env) protein cytoplasmic tails (CTs) appear to be composed of membrane- HIV-1 proximal, N-terminal unstructured regions, and three C-terminal amphipathic helices. Previous studies have Replication shown that WT and CT-deleted (ΔCT) Env proteins are incorporated into virus particles via different mechan- Envelope protein isms. WT Env proteins traffic to cell plasma membranes (PMs), are rapidly internalized, recycle to PMs, and are Cytoplasmic tail incorporated into virions in permissive and restrictive cells in a Gag matrix (MA) protein-dependent fashion. In contrast, previously described ΔCT proteins do not appear to be internalized after their arrival to PMs, and do not require MA, but are only incorporated into virions in permissive cell lines. We have analyzed a new set of HIV-1 CT variants with respect to their replication in permissive and restrictive cells. Our results provide novel details as to how CT elements regulate HIV-1 Env protein function. 1. Introduction et al., 2018; Ohno et al., 1997; Wyss et al., 2001). Internalized Env proteins either are shunted off to lysosomes for degradation, or return The pathways by which HIV-1 envelope (Env) proteins become in- to PMs on recycling endosomes in a pathway that is dependent, in corporated into virions are complicated and incompletely elucidated certain cell types, on the Rab11 coupling protein FIP1C (Qi et al., 2013, (Checkley et al., 2011).
    [Show full text]
  • Phosphorylation of the M2 Protein of Influenza a Virus Is Not Essential for Virus Viability
    VIROLOGY 252, 54±64 (1998) ARTICLE NO. VY989384 Phosphorylation of the M2 Protein of Influenza A Virus Is Not Essential for Virus Viability Joanne M. Thomas, Mark P. Stevens, Neil Percy,1 and Wendy S. Barclay2 School of Animal and Microbial Sciences, University of Reading, Whiteknights, UK RG6 6AJ Received May 14, 1998; returned to author for revision June 12, 1998; accepted August 18, 1998 M2 is a minor component of the influenza A virus envelope. The cytoplasmic tail of the M2 protein is posttranslationally modified in the infected cell by palmitylation and phosphorylation. The primary site for phosphorylation of the M2 cytoplasmic tail is serine 64, which is highly conserved yet not required for the activity of the M2 ion channel. Using an exogenous incorporation assay, we have shown that incorporation of M2 into virus particles is type-specific and does not require phosphorylation of the cytoplasmic tail. In addition, phosphorylation of the cytoplasmic tail is not required for the directional transport of M2 in polarized MDCK cells. Using a reverse genetics and reassortment procedure, we generated a virus (Ra) specifically mutated in segment 7 such that the M2 cytoplasmic tail could no longer be phosphorylated. The virus was found to grow as well as wild-type virus in tissue culture and in eggs, was stable on passage in these systems, and possessed no second-site mutations in the engineered RNA segment. In vivo Ra replicated in Balb/c mice at least as well as the parent strain A/WSN/33. These studies indicate that phosphorylation of the M2 cytoplasmic tail is not required for in vitro or in vivo replication of influenza A virus.
    [Show full text]
  • Respiratory Syncytial Virus and Coronaviruses
    Chapter 3 Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses Wahyu Surya, Montserrat Samsó and Jaume Torres Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53957 1. Introduction Viroporins are an increasingly recognized class of small viral membrane proteins (~60-120 amino acids) which oligomerize to produce hydrophilic pores at the membranes of virus- infected cells [1]. The existence of ‘viroporins’ was proposed more than 30 years ago after observing enhanced membrane permeability in infected cells [2]. These proteins form oligomers of defined size, and can act as proton or ion channels, and in general enhancing membrane permeability in the host [3]. Even though viroporins are not essential for the rep‐ lication of viruses, their absence results in attenuated or weakened viruses or changes in tropism (organ localization) and therefore diminished pathological effects [4, 5]. In addition to having one – sometimes two – α-helical transmembrane (TM) domain(s), viro‐ porins usually contain additional extramembrane regions that are able to make contacts with viral or host proteins. Indeed, the network of interactions of viroporins with other viral or cellular proteins is key to understand the regulation of viral protein trafficking through the vesicle system, viral morphogenesis and pathogenicity. In general, viroporins participate in the entry or release of viral particles into or out of cells, and membrane permeabilization may be a desirable functionality for the virus. Indeed, sev‐ eral viral proteins that are not viroporins are known to affect membrane permeabilization, e.g., A38L protein of vaccinia virus, a 33-kDa glycoprotein that allows Ca2+ influx and indu‐ ces necrosis in infected cells [6].
    [Show full text]
  • APICAL M2 PROTEIN IS REQUIRED for EFFICIENT INFLUENZA a VIRUS REPLICATION by Nicholas Wohlgemuth a Dissertation Submitted To
    APICAL M2 PROTEIN IS REQUIRED FOR EFFICIENT INFLUENZA A VIRUS REPLICATION by Nicholas Wohlgemuth A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2017 © Nicholas Wohlgemuth 2017 All rights reserved ABSTRACT Influenza virus infections are a major public health burden around the world. This dissertation examines the influenza A virus M2 protein and how it can contribute to a better understanding of influenza virus biology and improve vaccination strategies. M2 is a member of the viroporin class of virus proteins characterized by their predicted ion channel activity. While traditionally studied only for their ion channel activities, viroporins frequently contain long cytoplasmic tails that play important roles in virus replication and disruption of cellular function. The currently licensed live, attenuated influenza vaccine (LAIV) contains a mutation in the M segment coding sequence of the backbone virus which confers a missense mutation (alanine to serine) in the M2 gene at amino acid position 86. Previously discounted for not showing a phenotype in immortalized cell lines, this mutation contributes to both the attenuation and temperature sensitivity phenotypes of LAIV in primary human nasal epithelial cells. Furthermore, viruses encoding serine at M2 position 86 induced greater IFN-λ responses at early times post infection. Reversing mutations such as this, and otherwise altering LAIV’s ability to replicate in vivo, could result in an improved LAIV development strategy. Influenza viruses infect at and egress from the apical plasma membrane of airway epithelial cells. Accordingly, the virus transmembrane proteins, HA, NA, and M2, are all targeted to the apical plasma membrane ii and contribute to egress.
    [Show full text]
  • Investigation of the C-Terminal Helix of HIV-1 Matrix: a Region Essential for Multiple Functions in the Viral Life Cycle: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2011-07-10 Investigation of the C-Terminal Helix of HIV-1 Matrix: A Region Essential for Multiple Functions in the Viral Life Cycle: A Dissertation Laura A. Brandano University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Biological Factors Commons, Genetic Phenomena Commons, Immunology and Infectious Disease Commons, Therapeutics Commons, Virology Commons, Virus Diseases Commons, and the Viruses Commons Repository Citation Brandano LA. (2011). Investigation of the C-Terminal Helix of HIV-1 Matrix: A Region Essential for Multiple Functions in the Viral Life Cycle: A Dissertation. GSBS Dissertations and Theses. https://doi.org/ 10.13028/5zmj-9x81. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/552 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. i INVESTIGATION OF THE C-TERMINAL HELIX OF HIV-1 MATRIX: A REGION ESSENTIAL FOR MULTIPLE FUNCTIONS IN THE VIRAL LIFE CYCLE A Dissertation Presented by Laura A. Brandano Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR
    [Show full text]
  • XFEL Structures of the Influenza M2 Proton Channel: SPECIAL FEATURE Room Temperature Water Networks and Insights Into Proton Conduction
    XFEL structures of the influenza M2 proton channel: SPECIAL FEATURE Room temperature water networks and insights into proton conduction Jessica L. Thomastona, Rahel A. Woldeyesb, Takanori Nakane (中根 崇智)c, Ayumi Yamashitad, Tomoyuki Tanakad, Kotaro Koiwaie, Aaron S. Brewsterf, Benjamin A. Baradb, Yujie Cheng, Thomas Lemmina, Monarin Uervirojnangkoornh,i,j,k,l, Toshi Arimad, Jun Kobayashid, Tetsuya Masudad,m, Mamoru Suzukid,n, Michihiro Sugaharad, Nicholas K. Sauterf, Rie Tanakad, Osamu Nurekic, Kensuke Tonoo, Yasumasa Jotio, Eriko Nangod, So Iwatad,p, Fumiaki Yumotoe, James S. Fraserb, and William F. DeGradoa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; bDepartment of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158; cDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; dSPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan; eStructural Biology Research Center, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan; fMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; gSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853; hDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305; iHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; jDepartment of Neurology
    [Show full text]