Vitaceae) Based on Three Chloroplast Markers1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Morphological and Molecular Phylogenetic Analysis of Parthenocissus (Vitaceae) and Taxonomic Implications
Botanical Journal of the Linnean Society, 2012, 168, 43–63. With 9 figures A combined morphological and molecular phylogenetic analysis of Parthenocissus (Vitaceae) and taxonomic implications LIMIN LU1,2, JUN WEN1,3* and ZHIDUAN CHEN1* 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, China 3Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA Received 21 June 2010; revised 11 March 2011; accepted for publication 18 August 2011 Parthenocissus (the Virginia creeper genus, Vitaceae) consists of 13 species and shows a disjunct distribution between Asia and North America. We investigated the inflorescence structure, calyx morphology, appendages on the inner side of petals, leaf epidermis, pollen and seed characters throughout the genus. A combined phylogenetic analysis with 27 morphological and 4137 molecular characters was conducted and the result was largely congruent with that of the previous molecular work, but with higher resolution. The combined analysis identified two clades corresponding to the Asian and North American taxa. Parthenocissus feddei was resolved as closely related to the clade containing P. cuspidifera, P. heterophylla and P. semicordata. The four species share synapomorphies of having conspicuously raised veinlets, an obscurely five- (to eight-) lobed calyx, appendages on the inner side of petals covering the entire length of anthers and foveolate pollen exine ornamentation. Within the Old World clade, the pentafoliolate species were weakly supported as more closely related to species with both simple and trifoliolate leaves. Furthermore, the ancestral states of tendril apices, inflorescence structure, appendages on the inner side of petals and exine ornamentation of pollen grains were reconstructed on the molecular strict consensus tree. -
The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area. -
Cyphostemma Juttae SCORE: -2.0 RATING: Low Risk (Dinter & Gilg) Desc
TAXON: Cyphostemma juttae SCORE: -2.0 RATING: Low Risk (Dinter & Gilg) Desc. Taxon: Cyphostemma juttae (Dinter & Gilg) Desc. Family: Vitaceae Common Name(s): Namibian grape Synonym(s): Cissus juttae Dinter & Gilg tree grape wild grape Assessor: Chuck Chimera Status: Assessor Approved End Date: 14 Sep 2016 WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Succulent Tree, Ornamental, Toxic, Fire-Resistant, Fleshy-Fruit Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, -
Virginia Creeper (Parthenocissus Quinquefolia) Control Herbicide Options
Publication Number 006 November 2015 Virginia creeper (Parthenocissus quinquefolia) Control Herbicide Options E. David Dickens – Forest Productivity Professor and David J. Moorhead – Silviculture Professor UGA Warnell School Brief Virginia creeper (Parthenocissus quinquefolia), also known as five-leaved ivy and Victoria ivy, is in the Vitaceae (grape) family. It is native to eastern and central North America. Virginia creeper can occupy our SE US forests and can be a competitor in pine stands. Virginia creeper is a deciduous vine that can “climb” trees up to 50 feet or greater heights (Photo 1) or in clumps growing on shrubs (Photo 2). If not controlled, it can kill trees by canopying over the crowns and blocking sunlight to the tree’s foliage for photosynthesis. The leaves are palmately compound, composed of five leaflets (occasionally but rarely three) ranging from 3 to 8 inches in diameter with serrated (toothed) edges (Photo 3). The flowers are small and greenish, produced in late spring, and mature in late summer or early fall into small hard purplish-black berries ¼ to 1/3 inch in diameter. The berries are moderately toxic to humans and other mammals. The fruit (Photo 4) seeds are bird dispersed. Virginia creeper control is best done during active growth periods from mid-June to early October in Georgia. If Virginia creeper has climbed up into the trees, a prescribed burn, or cutting the vines to groundline may be needed to get the climbing vine down to the ground where foliar treatment can be made to new regrowth after the burn or cutting. Herbicides labeled to Control Virginia Creeper I. -
2010 the Michigan Botanist 73
2010 THE MICHIGAN BOTANIST 73 NOMENCLATURE OF THE THICKET CREEPER, PARTHENOCISSUS INSERTA (VITACEAE) James S. Pringle Royal Botanical Gardens P.O. Box 399 Hamilton, Ontario, Canada L8N 3H8 ABSTRACT Parthenocissus inserta (A. Kern.) Fritsch, rather than P. vitacea (Knerr) Hitchc., is the correct name for the thicket creeper, a species related to the Virginia creeper, P. quinquefolia . KEY WORDS: Parthenocissus , Vitaceae Two species of Parthenocissus are native to eastern and central North Amer - ica. One of these, to which the common name Virginia creeper is more appropri - ately applied, is P. quinquefolia (L.) Planch. Its natural range extends from Mex - ico probably to southern Maine, southern Ontario, and southern Minnesota, although it has escaped from cultivation farther north. The other species, the nomenclature of which is discussed here, has a more northern and western range, from Pennsylvania, Texas, and California north to ca. 50°N in Ontario and Man - itoba. “False Virginia creeper,” “thicket creeper,” and “grape-woodbine” have been proposed as vernacular names for the northern species, but none of these names has become widely used. Because of their abundance and the size of the plants, these species are ecologically important, influencing succession and pro - viding cover and food for wildlife. They are widely cultivated as ornamental vines in North America and Europe, although they may sometimes become a problem, as when shrubs or specimen trees are engulfed. Until early in the twentieth century few botanists distinguished between these species, and the assumption that “the” Virginia creeper is Parthenocissus quin - quefolia continues to result in reports of P. quinquefolia from localities north of its true range. -
1 History of Vitaceae Inferred from Morphology-Based
HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14 -
Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae. -
Traditional Phytotherapy of Some Medicinal Plants Used by Tharu and Magar Communities of Western Nepal, Against Dermatological D
TRADITIONAL PHYTOTHERAPY OF SOME MEDICINAL PLANTS USED BY THARU AND MAGAR COMMUNITIES OF WESTERN NEPAL, AGAINST DERMATOLOGICAL DISORDERS Anant Gopal Singh* and Jaya Prakash Hamal** *'HSDUWPHQWRI%RWDQ\%XWZDO0XOWLSOH&DPSXV%XWZDO7ULEKXYDQ8QLYHUVLW\1HSDO ** 'HSDUWPHQWRI%RWDQ\$PULW6FLHQFH&DPSXV7ULEKXYDQ8QLYHUVLW\.DWKPDQGX1HSDO Abstract: (WKQRERWDQ\VXUYH\ZDVXQGHUWDNHQWRFROOHFWLQIRUPDWLRQIURPWUDGLWLRQDOKHDOHUVRQWKHXVHRIPHGLFLQDO SODQWVLQWKHWUHDWPHQWRIGLIIHUHQWVNLQGLVHDVHVVXFKDVFXWVDQGZRXQGVHF]HPDERLOVDEVFHVVHVVFDELHVGRJ DQGLQVHFWELWHULQJZRUPOHSURV\EXUQVEOLVWHUVDOOHUJ\LWFKLQJSLPSOHVOHXFRGHUPDSULFNO\KHDWZDUWVVHSWLF XOFHUVDQGRWKHUVNLQGLVHDVHVLQZHVWHUQ1HSDOGXULQJGLIIHUHQWVHDVRQRI0DUFKWR0D\7KHLQGLJHQRXV NQRZOHGJH RI ORFDO WUDGLWLRQDO KHDOHUV KDYLQJ SUDFWLFDO NQRZOHGJH RI SODQWV LQ PHGLFLQH ZHUH LQWHUYLHZHG LQ YLOODJHVRI5XSDQGHKLGLVWULFWRIZHVWHUQ1HSDODQGQDWLYHSODQWVXVHGIRUPHGLFLQDOSXUSRVHVZHUHFROOHFWHGWKURXJK TXHVWLRQQDLUHDQGSHUVRQDOLQWHUYLHZVGXULQJ¿HOGWULSV$WRWDORISODQWVSHFLHVRIIDPLOLHVDUHGRFXPHQWHGLQ WKLVVWXG\7KHPHGLFLQDOSODQWVXVHGLQWKHWUHDWPHQWRIVNLQGLVHDVHVE\WULEDO¶VDUHOLVWHGZLWKERWDQLFDOQDPH LQ ELQRPLDOIRUP IDPLO\ORFDOQDPHVKDELWDYDLODELOLW\SDUWVXVHGDQGPRGHRISUHSDUDWLRQ7KLVVWXG\VKRZHGWKDW PDQ\SHRSOHLQWKHVWXGLHGSDUWVRI5XSDQGHKLGLVWULFWFRQWLQXHWRGHSHQGRQWKHPHGLFLQDOSODQWVDWOHDVWIRUWKH WUHDWPHQWRISULPDU\KHDOWKFDUH Keywords 7KDUX DQG 0DJDU WULEHV7UDGLWLRQDO NQRZOHGJH 'HUPDWRORJLFDO GLVRUGHUV 0HGLFLQDO SODQWV:HVWHUQ 1HSDO INTRODUCTION fast disappearing due to modernization and the tendency to discard their traditional life style and gradual 7KH NQRZOHGJH -
Flora Vascular De La Laguna Avendaño, Provincia De Diguillín, Chile
Gayana Bot. 76(1): 74-83, 2019. ISSN 0016-5301 Artículo Original Flora vascular de la Laguna Avendaño, Provincia de Diguillín, Chile Vascular flora of the Avendaño Lagoon, Province of Diguillín, Chile CARLOS BAEZA1*, ROBERTO RODRÍGUEZ1 & OSCAR TORO-NÚÑEZ1 1Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile. *[email protected] RESUMEN La Laguna Avendaño se ubica en la Provincia de Diguillín, dentro del macrobioclima Mediterráneo, Región de Ñuble, Chile, y constituye un importante centro de recreación durante los meses de verano. Se estudió la flora vascular presente en el cuerpo de agua y en sectores aledaños, los cuales difieren en el grado de antropización. Se compararon 5 sitios en cuanto a la composición y riqueza específica de ellos. Los sitios más alterados, en base al número de especies introducidas, corresponden a los lugares abiertos al público y de uso recreacional masivo. Se documenta la presencia de 113 especies de plantas vasculares que crecen espontáneamente, incluyendo 6 Pteridophyta, 77 Dicotyledoneae y 30 Monocotyledoneae. Del total de especies, 13,3% son endémicas de Chile, 52,2% nativas y 34,5% introducidas. Las familias mejor representadas son: Poaceae, Asteraceae, Cyperaceae y Scrophulariaceae. El objetivo de este catálogo fue describir la flora aledaña al cuerpo de agua de esta laguna que tiene una enorme importancia turística para la Comuna de Quillón, y por ende fuerte presión antrópica. PALABRAS CLAVE: Laguna Avendaño, flora vascular, Chile. ABSTRACT The Avendaño Lagoon is located in the Province of Diguillin, Ñuble Region, Chile and represents a very popular recreation area during the summer season. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Sergio R. S. Cevallos-Ferriz * and Ruth A. Stockey Department of Botany, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
IAWA Bulletin n. s., Vol. 11 (3), 1990: 261-280 VEGETATIVE REMAINS OF THE ROSACEAE FROM THE PRINCETON CHERT (MIDDLE EOCENE) OF BRITISH COLUMBIA by Sergio R. S. Cevallos-Ferriz * and Ruth A. Stockey Department of Botany, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Summary Several anatomieally preserved twigs, a interpretation of a subtropical to temperate branehing speeimen and the wood of a large climate during the time of deposition. axis with affinities to Rosaeeae are deseribed Key words: Rosaeeae, Prunoideae, Maloi from the Prineeton ehert (Middle Eoeene) of deae, Prunus, fossil wood, Middle Eo British Columbia, Canada. Speeimens are eene. eharaeterised by a heteroeellular pith with a peri-medullary rone of thiek-walled oval eells Introduction and semi-ring-porous seeondary xylem with The Middle Eoeene Princeton ehert local vertieal traumatie duets, fibres with eireular ity of British Columbia has a diverse permin bordered pits, and mostly seanty paratracheal eralised flora that includes vegetative and and oeeasionally apotracheal parenehyma. reproduetive organs of ferns, conifers, mono Ray to vessel pitting is similar to the alternate eotyledons and dieotyledons. Among dicoty intervaseular pitting. Seeondary phloem is ledonous plant reproductive organs are flow eomposed of tangentially oriented diseontin ers represented by Paleorosa similkameenen uous bands of alternating fibres and thin sis Basinger 1976 (Rosaceae), Princetonia walled eells. Seeondary eortical tissues are allenbyensis Stockey 1987 (incertae sedis), represented by a phelloderm eharaeterised by and a sapindaeeous flower (Erwin & Stockey rectangular eells and phellern with rectangular 1990). Fruits and seeds include Decodon al eoneave eells. Anatomical variation between lenbyensis Cevallos-Ferriz & Stockey 1988 speeimens can be related to age of the woody (Lythraeeae), Allenbya collinsonae Cevallos axes. -
Bushkiller [Cayratia Japonica (Thunb.) Gagnepain] Victor Maddox, Ph.D., Postgraduate Research Assistant, Mississippi State University John D
Bushkiller [Cayratia japonica (Thunb.) Gagnepain] Victor Maddox, Ph.D., Postgraduate Research Assistant, Mississippi State University John D. Byrd Jr., Ph.D., Extension/Research Professor, Mississippi State University Randy Westbrooks, Ph.D., Biological Researcher, U.S. Geological Survey Fig. 1. Bushkiller grows on a white pine Fig. 2. Bushkiller has small orange or salmon- Fig. 3. Bushkiller has compound leaves with five with English ivy. colored sterile flowers. leaflets and alternate leaf arrangements. Introduction Problems caused Bushkiller [Cayratia japonica (Thunb.) Gagnep.][Syn. Causania japonica (Thunb. ex Murray) Raf.; Cissus japonica (Thunb. ex Murray) Willd.; Cissus tenuifolia F. Heyne ex Planch.; Cissus tenuifolia F. Heyne in Wall.; Columella japonica (Thunb. ex Murray) Merr.; Vitis japonica Thunb. ex Murray; Vitis tenuifolia (F. Heyne) Laws in Hook.f.] is an evergreen to deciduous, perennial woody vine native to southeast Asia and Australia. The extent of its invasion is not clear, but new locations have been reported and efforts are underway to map and monitor its spread. Regulations Bushkiller is not regulated in the United States, although there is interest. It continues to spread in the MidSouth, espe- cially Louisiana. Description Vegetative growth Bushkiller is a high-climbing vine that has tendrils, similar to grapes. Vines can be somewhat fleshy. Roots are also fleshy and can produce many adventitious shoots especially when cut or disturbed. Leaves are compound with five leaf- lets and alternate leaf arrangement. Leaves vary in size, but tend to be around 5 inches long and slightly less in width. Leaflets are smooth and shiny with serrate leaf margins. Flowering/fruiting The small salmon- or orange-colored flowers are orange and born in flat-topped inflorescences.