Van-Der-Heever Msc 2017.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Van-Der-Heever Msc 2017.Pdf Intra- and interspecific variability in the distribution patterns and diet of the two most common catsharks caught in demersal trawls off the West and South coasts of South Africa: Evidence for habitat and resource partitioning? By Grant Mark van der Heever A thesis submitted in fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. July 2017 i Intra- and interspecific variability in the distribution patterns and diet of the two most common catsharks caught in demersal trawls off the West and South coasts of South Africa: Evidence for habitat and resource partitioning? Grant Mark van der Heever Keywords: By-catch Catsharks Competition Demersal Diet Distribution Intraspecific Interspecific Resource Stable isotope analysis ii http://etd.uwc.ac.za/ Abstract Intra- and interspecific variability in the distribution patterns and diet of the two most common catsharks caught in demersal trawls off the West and South coasts of South Africa: Evidence for habitat and resource partitioning? G.M van der Heever MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. The objective of this thesis was to elucidate intra- and interspecific variability in the distribution patterns and diet of the two most common demersal catsharks taken as by-catch by the commercial trawling industry targeting the two Cape hake species off the West and South coasts of South Africa. Samples and data were collected during routine demersal hake biomass surveys conducted by DAFF, with distribution data collected from 1994 to 2015 and stomach content and stable isotope data collected from 2014 to 2015. On examination of the distribution data, Holohalaelurus regani was found to be more abundant on the West Coast and Scyliorhinus capensis was found to be more abundant on the South Coast. Both catsharks were observed to display size-based segregations, with catshark size increasing with depth in both species. Differences in the distribution patterns of male and female H. regani were also noted, with female catsharks inhabiting inshore areas and male catsharks inhabiting offshore areas. The two catsharks appeared to display high levels of dietary overlap, with individuals feeding on the most abundant crustaceans and cephalopods caught as by-catch in the trawl on each coast. However, iii http://etd.uwc.ac.za/ although both catsharks consumed similar prey groups across the coast, the abundances of the individual prey species in their diets appeared to differ. Ontogenetic shifts in the diets of both catshark species were also noted, with small catsharks being observed to primarily feed on small prey items, and large catsharks being observed to primarily feed on large prey items. A similar trend was noted for stable isotope data, with δ15N isotope values increasing with catshark size in both species. Differences in δ15N isotope values were noted between coasts as well, with both catshark species displaying significantly higher δ15N values on the West Coast than on the South Coast. The results appear to indicate a strong relationship between habitat and diet, with food separation appearing to be largely a reflection of habitat separation. Based on this, I argue that these morphologically similar catshark species partition their habitat and food resources to limit co-existence, and thus reduce the intensity of intra-and interspecific competition between them. Alternatively, these differences may also be a reflection of differences in environmental tolerance owing the unique environmental and biological factors evident off each coast; or they may simply be due to size-based changes in habitat use that may be associated with parturition or nursery grounds, changes in the habitat of their preferred diet items, or a means to prevent predation by larger sharks. iv http://etd.uwc.ac.za/ DECLARATION I declare that: Intra- and interspecific variability in the distribution patterns and diet of the two most common catsharks caught in demersal trawls off the West and South coasts of South Africa: Evidence for habitat and resource partitioning? is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Grant Mark van der Heever July 2017 Signed: v http://etd.uwc.ac.za/ Acknowledgements Firstly, I would like to express my sincere gratitude to my supervisor, Professor Mark John Gibbons, for his continuous support and patience throughout this thesis. He gave me the opportunity to fulfil my childhood dream, and I am forever grateful. I would also like to express my thanks to my co-supervisors, Dr Carl van der Lingen and Dr Rob Leslie, for their insightful comments, knowledge and guidance. Their expertise and passion for marine science most certainly increased my love for marine life. Besides my supervisors, I would like to acknowledge and thank the Department of Agriculture, Forestry and Fisheries (DAFF) demersal team, which includes; Dr Deon Durholtz, Robert Cooper, George Julius, George Kant, Clifford Hart, James Peterson and Joe Mhlongo. Their support and guidance, and enthusiasm and humour made the month long research surveys something to look forward to. Special thanks are also due to the captain, officers and crew of FV Andromeda; thanks for your hospitality and safe ventures. Additionally, I would like to thank Tracey Fairweather (DAFF) for her technical support with GIS, as well as Ian Newton and John Lanham from the light stable isotope unit at the University of Cape Town, for processing my muscle tissue samples. I am also grateful to Dr Lara Atkinson (SAEON) for encouraging me to persevere and write. Special thanks are also due to DAFF and NRF for financial support. Most of all, I would like to thank my family, Joy, Mark and Tammy for their love and support. They gave me the opportunity to achieve my life-long dream of vi http://etd.uwc.ac.za/ becoming a marine biologist, and I will forever be indebted to them. Last but not least, I would like to thank my partner, friend and ad-hoc research assistant, Danielle Laubscher, for her love and patience. Thank you for the encouragement, motivation and for putting up with my constant “does this sentence make sense to you” question. It really meant a lot, and I thank you for that. vii http://etd.uwc.ac.za/ Table of Contents Chapter One: General Introduction ................................ ................................................................... 1 Chapter Two: Methods ................................................................ ...................................................... 15 General Methods ............................................................................................................................ 15 Study location .............................................................................................................................. 15 Survey design .............................................................................................................................. 15 Analyses ...................................................................................................................................... 17 Distribution Chapter Methods ...................................................................................................... 18 Study location and data collection ............................................................................................... 18 Data analysis................................................................................................................................ 18 Diet Chapter Methods ................................................................................................................... 19 Study location .............................................................................................................................. 19 Sample collection ........................................................................................................................ 20 Prey identification ....................................................................................................................... 20 Analysis of diet ............................................................................................................................ 21 Statistical analyses ....................................................................................................................... 23 Stable Isotope Chapter Methods ................................................................................................... 25 Study location .............................................................................................................................. 25 Data collection ............................................................................................................................. 25 Laboratory analysis ..................................................................................................................... 26 Analysis of stable isotope data .................................................................................................... 27 Statistical analyses ....................................................................................................................... 27 Chapter Three: Spatial and ontogenetic variability in the distribution pattens of two co- occurring
Recommended publications
  • <I>Todaropsis Eblanae</I>
    BULLETIN OF MARINE SCIENCE, 71(2): 711–724, 2002 RECRUITMENT, GROWTH AND REPRODUCTION IN TODAROPSIS EBLANAE (BALL, 1841), IN THE AREA FISHED BY FRENCH ATLANTIC TRAWLERS J. P. Robin, V. Denis, J. Royer and L. Challier ABSTRACT Short-finned squid landed by the French fishery are by-catch of trawlers operating in the Northern Bay of Biscay and Southern Celtic sea. In the period November 1997–June 1999 samples of commercial specimen were collected monthly. A total 1065 Todaropsis eblanae were analysed for biological parameters. In a subsample of animals age was determined using statoliths. Mature animals are observed almost all year round, however juvenile recruitment occurred mainly in winter and sexual maturation increased in spring. Size at sexual maturity (DML50) was 16.5 cm in females and 13.5 cm in males. Length frequencies showed that the range of exploited stages was 9–29 cm in females and 8–22 cm in males. Statolith analysis indicated that youngest recruits were about 4 mo old and that growth was faster in females than in males (3.41 and 1.86 cm mo−1, respectively). Sex-related differences in growth and size at maturity are in agreement with previously published data from the Galician coast. Todaropsis eblanae (Ball, 1841) is an oceanic squid, which lives near the bottom on the shelf break. In the Mediterranean, it has been observed at depths between 200 and 600 m in the Western area (Quetglas et al., 2000) and in shallower waters in the Central and Eastern areas (Belcari and Sartor, 1993; Tursi and D’Onghia, 1992).
    [Show full text]
  • Aberystwyth University Spermatophore Dimorphism in the Chokka Squid Loligo Reynaudii Associated with Alternative Mating Tactics
    Aberystwyth University Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics Iwata, Yoko; Sauer, Warwick H. H.; Sato, Noriyosi; Shaw, Paul Published in: Journal of Molluscan Studies DOI: 10.1093/mollus/eyy002 Publication date: 2018 Citation for published version (APA): Iwata, Y., Sauer, W. H. H., Sato, N., & Shaw, P. (2018). Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics. Journal of Molluscan Studies, 84(2), 152-162. https://doi.org/10.1093/mollus/eyy002 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 25. Sep. 2021 Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics Yoko Iwata1*, Warwick H. H. Sauer2, Noriyosi Sato3, Paul W. Shaw4 1 Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • ICES CM 2000/G:04 Ref: ACFM, ACME
    Living Resources Committee ICES CM 2000/G:04 Ref: ACFM, ACME REPORT OF THE WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY Aberdeen, Scotland 7–11 February 2000 This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2–4 DK–1261 Copenhagen K Denmark TABLE OF CONTENTS Section Page 1 INTRODUCTION......................................................................................................................................................1 1.1 Terms of Reference .........................................................................................................................................1 1.2 Attendance.......................................................................................................................................................1 1.3 Opening of the Meeting...................................................................................................................................2 1.4 Arrangements for the Preparation of the Report..............................................................................................2 2 CEPHALOPOD LANDING STATISTICS (TOR A) ................................................................................................2 2.1 Compilation
    [Show full text]
  • Cephalopod Id Guide for the North Sea
    CEPHALOPOD ID GUIDE FOR THE NORTH SEA Christian Drerup – University of Algarve, Portugal Dr Gavan Cooke – Anglia Ruskin University, UK PREFACE The intention of this guide is to help identifying cephalopod species in the North Sea which you may find while SCUBA diving, snorkelling, a boat trip or even while walking along a rocky shore. It focuses on shallow water and subsurface-inhabiting species or those which at least partially spent their life in depths less than 50 meters. As you may encounter these animals in the wild most likely just for a short glance, we kept the description of each cephalopod rather simple and based on easy-to-spot external features. This guide was made within the scope of the project “Cephalopod Citizen Science”. This project tries to gather scientific information about the “daily life” of cephalopods by analysing pictures of those animals which were posted in several, project-related facebook groups. For further information about this project, please follow the link below: https://www.researchgate.net/project/Cephalopod-Citizen-Science We hope this guide will provide useful information and help you to identify those cephalopods you may encounter soon. Christian Drerup – University of Algarve, Portugal Dr. Gavan Cooke – Anglia-Ruskin-University, UK Common octopus (Octopus vulgaris). © dkfindout.com 2 CONTENTS HOW SHOULD WE INTERACT WITH CEPHALOPODS WHEN DIVING WITH THEM? ............... 4 SIGNS THAT A CEPHALOPOD IS UNHAPPY WITH YOUR PRESENCE ...................................... 5 OCTOPUSES (OCTOPODA) ................................................................................................
    [Show full text]
  • Todaropsis Eblanae (Cephalopoda, Ommastrephidae) in the North Sea
    ICES CM 2004 CC:37 Karsten Zumholz Uwe Piatkowski New data on the biology of the Lesser Flying Squid, Todaropsis eblanae (Cephalopoda, Ommastrephidae) in the North Sea Karsten Zumholz & Uwe Piatkowski Leibniz-Institute of Marine Sciences, IFM–GEOMAR, Kiel, Germany Abstract Materials and Methods A total of 319 specimens of the ommastrephid Specimens were collected on board of FRV squid Todaropsis eblanae, collected from “Walther Herwig III” during ten bottom trawl bottom trawl surveys in the North Sea were surveys carried out each winter (January/ examined. New information on seasonal length February) and summer (Juli/ August) from 1998 frequency distributions, reproductive biology to 2002. Trawls were carried out using the GOV- and relationships of beak size to mantle length trawl (mesh-size of 50mm in the codend, for and wet body mass from a hitherto not very detailed information see: IBTS Report, ICES well studied area is supplied. 2000) at depth from 20 to 180 meters during daytime from 7.00h to 19.00 UTC. T. eblanae has been described as rare in Scottish Waters, but occasionally it can appear in very large numbers and is found regularly in bottom trawls presented in the current study. Ecologically, squid play an important part in the North Sea both as predators and particularly prey. Former investigations showed very poor correlations between biological cephalopod data from research cruises and from commercial landings in the North Sea. This emphasizes the importance of scientific Fig. 1: Map showing the survey area and sampling sites. ICES rectangles where trawls surveys and especially the value of long time were carried out are given in light grey, red dots stand for sampling sites of Todaropsis Squids were frozen immediately after capture.
    [Show full text]
  • Specific Objective 1 Sov 3 Ross-Gillespie Phd 2016
    SoV 1.3 Modelling cannibalism and inter-species predation for the Cape hake species Merluccius capensis and M. paradoxus Andrea Ross-Gillespie A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University inof the Cape Town Department of Mathematics and Applied Mathematics University of Cape Town May 2016 Supervisor: Douglas S. Butterworth The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration of Authorship I know the meaning of plagiarism and declare that all of the work in the thesis, save for that which is properly acknowledged (including particularly in the Acknowledgements section that follows), is my own. Special men- tion is made of the model underlying the equations presented in Chapter 4, which was developed by Rademeyer and Butterworth (2014b). I declare that this thesis has not been submitted to this or any other university for a degree, either in the same or different form, apart from the model underlying the equations presented in Chapter 4, an earlier version of which formed part of the PhD thesis of R. Rademeyer in 2012. ii Acknowledgements Undertaking a PhD is as much an emotional challenge and test of character as it is an intellectual pursuit. I definitely could not have done it without the support of a multitude of family, friends and colleagues.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Wgceph Report 2018
    ICES WGCEPH REPORT 2018 ECOSYSTEM PROCESSES AND DYNAMICS STEERING GROUP ICES CM 2018/EPDSG:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 5-8 June 2018 Pasaia, San Sebastian, Spain International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5–8 June 2018, Pasaia, San Sebastian, Spain. ICES CM 2018/EPDSG:12. 194 pp. https://doi.org/10.17895/ices.pub.8103 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, imag- es, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other re- production requests, please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2019 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2018 | i Contents Executive summary ...............................................................................................................
    [Show full text]
  • Of South Australia's Giant Cuttlefish Breeding Population
    Monitoring the relative abundance and biomass of South Australia’s Giant Cuttlefish breeding population MA Steer, S Gaylard and M Loo SARDI Publication No. F2013/000074-1 SARDI Research Report Series No. 684 FRDC TRF PROJECT NO. 2011/054 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 March 2013 Final Report for the Fisheries Research and Development Corporation Monitoring the relative abundance and biomass of South Australia’s Giant Cuttlefish breeding population Final Report for the Fisheries Research and Development Corporation MA Steer, S Gaylard and M Loo SARDI Publication No. F2013/000074-1 SARDI Research Report Series No. 684 FRDC TRF PROJECT NO. 2011/054 March 2013 i This publication may be cited as: Steer, M.A., Gaylard, S. and Loo, M. (2013). Monitoring the relative abundance and biomass of South Australia‟s Giant Cuttlefish breeding population. Final Report for the Fisheries Research and Development Corporation. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2013/000074-1. SARDI Research Report Series No. 684. 103pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]