KURT OTTO FRIEDRICHS September 28, 1901–January 1, 1983
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cell Method: a Purely Algebraic Computational Method in Physics and Engineering Copyright © Momentum Press®, LLC, 2014
THE CELL METHOD THE CELL METHOD A PURELY ALGEBRAIC COMPUTATIONAL METHOD IN PHYSICS AND ENGINEERING ELENA FERRETTI MOMENTUM PRESS, LLC, NEW YORK The Cell Method: A Purely Algebraic Computational Method in Physics and Engineering Copyright © Momentum Press®, LLC, 2014. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other—except for brief quotations, not to exceed 400 words, without the prior permission of the publisher. First published by Momentum Press®, LLC 222 East 46th Street, New York, NY 10017 www.momentumpress.net ISBN-13: 978-1-60650-604-2 (hardcover) ISBN-10: 1-60650-604-8 (hardcover) ISBN-13: 978-1-60650-606-6 (e-book) ISBN-10: 1-60650-606-4 (e-book) DOI: 10.5643/9781606506066 Cover design by Jonathan Pennell Interior design by Exeter Premedia Services Private Ltd. Chennai, India 10 9 8 7 6 5 4 3 2 1 Printed in the United States of America CONTENTS ACKNOWLEDGMENTS vii PREFACE ix 1 A COMpaRISON BETWEEN ALGEBRAIC AND DIFFERENTIAL FORMULATIONS UNDER THE GEOMETRICAL AND TOPOLOGICAL VIEWPOINTS 1 1.1 Relationship Between How to Compute Limits and Numerical Formulations in Computational Physics 2 1.1.1 Some Basics of Calculus 2 1.1.2 The e − d Definition of a Limit 4 1.1.3 A Discussion on the Cancelation Rule for Limits 8 1.2 Field and Global Variables 15 1.3 Set Functions in Physics 20 1.4 A Comparison Between the Cell Method and the Discrete Methods 21 2 ALGEBRA AND THE GEOMETRIC INTERPRETATION -
Olga Ladyzhenskaya and Olga Ole˘Inik: Two Great Women Mathematicians of the 20Th Century
OLGA LADYZHENSKAYA AND OLGA OLE˘INIK: TWO GREAT WOMEN MATHEMATICIANS OF THE 20TH CENTURY SUSAN FRIEDLANDER∗ AND BARBARA LEE KEYFITZ This short article celebrates the contributions of women to partial differ- ential equations and their applications. Although many women have made important contributions to this field, we have seen the recent deaths of two of the brightest stars–Olga Ladyzhenskaya and Olga Ole˘ınik–and in their memory, we focus on their work and their lives. The two Olgas had much in common and were also very different. Both were born in the 1920s in the Soviet Union, grew up during very difficult years, and survived the awful death and destruction of the World War II. Shortly after the war, they were students together at Moscow State Uni- versity where they were both advised by I. G. Petrovsky, whose influence on Moscow mathematics at the time was unsurpassed. Both were much in- fluenced by the famous seminar of I. M. Gelfand, and both young women received challenging problems in PDE from Gelfand. In 1947, both Olgas graduated from Moscow State University, and then their paths diverged. Olga Ole˘ınik remained in Moscow and continued to be supervised by Petro- vsky. Her whole career was based in Moscow; after receiving her Ph.D. in 1954, she became first a professor and ultimately the head of the Depart- ment of Differential Equations at Moscow State University. Olga Ladyzhen- skaya moved in 1947 to Leningrad, and her career developed at the Steklov Institute there. Like Ole˘ınik, her mathematical achievements were very in- fluential; as a result of her work, Ladyzhenskaya overcame discrimination to become the uncontested leader of the Leningrad school of PDE. -
German Jews in the United States: a Guide to Archival Collections
GERMAN HISTORICAL INSTITUTE,WASHINGTON,DC REFERENCE GUIDE 24 GERMAN JEWS IN THE UNITED STATES: AGUIDE TO ARCHIVAL COLLECTIONS Contents INTRODUCTION &ACKNOWLEDGMENTS 1 ABOUT THE EDITOR 6 ARCHIVAL COLLECTIONS (arranged alphabetically by state and then city) ALABAMA Montgomery 1. Alabama Department of Archives and History ................................ 7 ARIZONA Phoenix 2. Arizona Jewish Historical Society ........................................................ 8 ARKANSAS Little Rock 3. Arkansas History Commission and State Archives .......................... 9 CALIFORNIA Berkeley 4. University of California, Berkeley: Bancroft Library, Archives .................................................................................................. 10 5. Judah L. Mages Museum: Western Jewish History Center ........... 14 Beverly Hills 6. Acad. of Motion Picture Arts and Sciences: Margaret Herrick Library, Special Coll. ............................................................................ 16 Davis 7. University of California at Davis: Shields Library, Special Collections and Archives ..................................................................... 16 Long Beach 8. California State Library, Long Beach: Special Collections ............. 17 Los Angeles 9. John F. Kennedy Memorial Library: Special Collections ...............18 10. UCLA Film and Television Archive .................................................. 18 11. USC: Doheny Memorial Library, Lion Feuchtwanger Archive ................................................................................................... -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
Chapter 4 X.Pdf
CHAPTER 4 ANALYSIS OF THE GOVERNING EQUATIONS 4.1 INTRODUCTION The mathematical nature of the systems of governing equations deduced in Chapters 2 and 3 is investigated in this chapter. The systems of PDEs that express the quasi-equilibrium approximation are studied in greater depth. The analysis is especially important for the systems whose solutions are likely to feature discontinuities, as a result of strong gradients growing steeper, or because the initial data is already discontinuous. The geomorphic shallow-water flows, such as the dam-break flow considered in Chapter 3, are the paradigmatic example of flows for which discontinuities arise fundamentally because of the initial conditions. Laboratory experiments show that, in the first instants of a sudden collapse of a dam, vertical accelerations are strong and a bore is formed, either through the breaking of a wave (Stansby et al. 1998) or due to the incorporation of bed material (Capart 2000, Leal et al. 2002). Intense erosion occurs in the vicinity of the dam and a highly saturated wave front is likely to form at ttt≡≈0 4 , thg00= , where h0 is the initial water depth in the reservoir. The saturated wave front can be seen forming in figure 3.1(a). Unlike the debris flow resulting from avalanches or lahars, the saturated front is followed by a sheet-flow similar to that 303 encountered in surf or swash zones (Asano 1995), as seen in figures 3.2(b) and (c). The intensity of the sediment transport decreases in the upstream direction as the flow velocities approach fluvial values. -
Notices of the American Mathematical
OF THE AMERICAN MATHEMATICAL SOCIETY VOLUMf 12, NUMBER 2 ISSUE NO. 80 FEBRUARY 1965 cNotiaiJ OF THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. \Yalker CONTENTS MEETINGS Calendar of Meetings o o o o o o o o o • o o • o o o o o o o • o 0 o 0 o 0 • 0 • 0 0 • 0 0 184 Program of the Meeting in New York. o 0 o 0 o 0 0 • 0 o o o 0 0 0 0 • 0 0 0 0 0 • 185 Abstracts for the Meeting- Pages 209-216 PRELIMINARY ANNOUNCEMENTS OF MEETINGS • o o o o o o o o • o 0 • 0 • 0 • • • 188 ACTIVITIES OF OTHER ASSOCIATIONS •••• o o. o o o o • o o o •• o 0 0 0. o 0 0 0 0 191 LETTERS TO THE EDITOR • o ••••• o o • o o o o o • o ••• o •••• o o o •• o o • o o 192 MEMORANDA TO MEMBERS List of Retired Mathematicians 190 Increase in Page Charges o o ••• o •• o • o o o •••••• 0 ••• 0 0 0 •• 0 0 0 0 194 Journals in Microform • o •••• o 0 ••• o • o ••• 0 •• o ••••• 0 •• 0 • • • • 194 Backlog of Mathematics Research Journals 0 0 0. 0. 0 ••• 0 •• 0 •• 0.. 195 Corporate Members ••••••••••••• 0 • 0 0 0 0 •• 0 0 • 0 •• 0 0 •• 0 ••• 0 201 ASSISTANTSHIPS AND FELLOWSHIPS IN MATHEMATICS 1965-1966 0 ••• 0 • 0 196 NEW AMS PUBLICATIONS • o •• o •• o •••• o • o o ••••• o o o •• o o •• o • o • o • 197 PERSONAL ITEMS .••••• o •• o. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
President's Report
AWM ASSOCIATION FOR WOMEN IN MATHE MATICS Volume 36, Number l NEWSLETTER March-April 2006 President's Report Hidden Help TheAWM election results are in, and it is a pleasure to welcome Cathy Kessel, who became President-Elect on February 1, and Dawn Lott, Alice Silverberg, Abigail Thompson, and Betsy Yanik, the new Members-at-Large of the Executive Committee. Also elected for a second term as Clerk is Maura Mast.AWM is also pleased to announce that appointed members BettyeAnne Case (Meetings Coordi nator), Holly Gaff (Web Editor) andAnne Leggett (Newsletter Editor) have agreed to be re-appointed, while Fern Hunt and Helen Moore have accepted an extension of their terms as Member-at-Large, to join continuing members Krystyna Kuperberg andAnn Tr enk in completing the enlarged Executive Committee. I look IN THIS ISSUE forward to working with this wonderful group of people during the coming year. 5 AWM ar the San Antonio In SanAntonio in January 2006, theAssociation for Women in Mathematics Joint Mathematics Meetings was, as usual, very much in evidence at the Joint Mathematics Meetings: from 22 Girls Just Want to Have Sums the outstanding mathematical presentations by women senior and junior, in the Noerher Lecture and the Workshop; through the Special Session on Learning Theory 24 Education Column thatAWM co-sponsored withAMS and MAA in conjunction with the Noether Lecture; to the two panel discussions thatAWM sponsored/co-sponsored.AWM 26 Book Review also ran two social events that were open to the whole community: a reception following the Gibbs lecture, with refreshments and music that was just right for 28 In Memoriam a networking event, and a lunch for Noether lecturer Ingrid Daubechies. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
Implications for Understanding the Role of Affect in Mathematical Thinking
Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Rena E. Gelb All Rights Reserved Abstract Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb The study examines the role of music in the lives and work of 20th century mathematicians within the framework of understanding the contribution of affect to mathematical thinking. The current study focuses on understanding affect and mathematical identity in the contexts of the personal, familial, communal and artistic domains, with a particular focus on musical communities. The study draws on published and archival documents and uses a multiple case study approach in analyzing six mathematicians. The study applies the constant comparative method to identify common themes across cases. The study finds that the ways the subjects are involved in music is personal, familial, communal and social, connecting them to communities of other mathematicians. The results further show that the subjects connect their involvement in music with their mathematical practices through 1) characterizing the mathematician as an artist and mathematics as an art, in particular the art of music; 2) prioritizing aesthetic criteria in their practices of mathematics; and 3) comparing themselves and other mathematicians to musicians. The results show that there is a close connection between subjects’ mathematical and musical identities. I identify eight affective elements that mathematicians display in their work in mathematics, and propose an organization of these affective elements around a view of mathematics as an art, with a particular focus on the art of music. -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- Mogenization
in \Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- mogenization. Naples, Complesso Monte S. Angelo, June 18-22 and 23-27, 2001, Ed. L. Carbone and R. De Arcangelis, 191{211, Gakkotosho, Tokyo, 2003". On Homogenization and Γ-convergence Luc TARTAR1 In memory of Ennio DE GIORGI When in the Fall of 1976 I had chosen \Homog´en´eisationdans les ´equationsaux d´eriv´eespartielles" (Homogenization in partial differential equations) for the title of my Peccot lectures, which I gave in the beginning of 1977 at Coll`egede France in Paris, I did not know of the term Γ-convergence, which I first heard almost a year after, in a talk that Ennio DE GIORGI gave in the seminar that Jacques-Louis LIONS was organizing at Coll`egede France on Friday afternoons. I had not found the definition of Γ-convergence really new, as it was quite similar to questions that were already discussed in control theory under the name of relaxation (which was a more general question than what most people mean by that term now), and it was the convergence in the sense of Umberto MOSCO [Mos] but without the restriction to convex functionals, and it was the natural nonlinear analog of a result concerning G-convergence that Ennio DE GIORGI had obtained with Sergio SPAGNOLO [DG&Spa]; however, Ennio DE GIORGI's talk contained a quite interesting example, for which he referred to Luciano MODICA (and Stefano MORTOLA) [Mod&Mor], where functionals involving surface integrals appeared as Γ-limits of functionals involving volume integrals, and I thought that it was the interesting part of the concept, so I had found it similar to previous questions but I had felt that the point of view was slightly different.