Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- Mogenization

Total Page:16

File Type:pdf, Size:1020Kb

Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- Mogenization in \Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- mogenization. Naples, Complesso Monte S. Angelo, June 18-22 and 23-27, 2001, Ed. L. Carbone and R. De Arcangelis, 191{211, Gakkotosho, Tokyo, 2003". On Homogenization and Γ-convergence Luc TARTAR1 In memory of Ennio DE GIORGI When in the Fall of 1976 I had chosen \Homog´en´eisationdans les ´equationsaux d´eriv´eespartielles" (Homogenization in partial differential equations) for the title of my Peccot lectures, which I gave in the beginning of 1977 at Coll`egede France in Paris, I did not know of the term Γ-convergence, which I first heard almost a year after, in a talk that Ennio DE GIORGI gave in the seminar that Jacques-Louis LIONS was organizing at Coll`egede France on Friday afternoons. I had not found the definition of Γ-convergence really new, as it was quite similar to questions that were already discussed in control theory under the name of relaxation (which was a more general question than what most people mean by that term now), and it was the convergence in the sense of Umberto MOSCO [Mos] but without the restriction to convex functionals, and it was the natural nonlinear analog of a result concerning G-convergence that Ennio DE GIORGI had obtained with Sergio SPAGNOLO [DG&Spa]; however, Ennio DE GIORGI's talk contained a quite interesting example, for which he referred to Luciano MODICA (and Stefano MORTOLA) [Mod&Mor], where functionals involving surface integrals appeared as Γ-limits of functionals involving volume integrals, and I thought that it was the interesting part of the concept, so I had found it similar to previous questions but I had felt that the point of view was slightly different. I thought that the idea could be useful for questions like surface tension, but I would have preferred to consider that in a dynamical situation, of course, and although there was no direct minimization of functionals in Ennio DE GIORGI's approach, it had for me the same limitations that I had observed in others, who clung to their obviously wrong belief that Nature minimizes energy. What I had taught in my Peccot lectures, contained extensions of some work that I had done with Fran¸coisMURAT, on a slightly more general approach than G-convergence, which he later called H-convergen- ce, and on the notion of Compensated Compactness. I thought that it was clear from my lectures that H- convergence and Compensated Compactness were two aspects of the same question, which is to understand what kind of oscillations (which one often calls microstructure nowadays) are compatible with a given system of partial differential equations, and what effective equations could be derived, for describing the macroscopic behaviour of a few interesting quantities; in some way it is this global point of view which should be called Homogenization, although for simplicity Homogenization has been first identified with the simpler aspect of H-convergence (or G-convergence in some cases), but then the term seems to have lost its original meaning due to the limitations of those who were using it and who lost track of any goal by concentrating on too many similar examples; similarly the limitations of those using Γ-convergence has made it lose some of the power that Ennio DE GIORGI had put in the concept. Although I had borrowed the term Homogenization from Ivo BABUSKAˇ , who had been interested in questions with periodic structures, in the spirit of what Henri SANCHEZ-PALENCIA had also done, I had clearly set up a much more general framework, which should have been found natural to anyone who un- derstood a little about Continuum Mechanics. I would have been greatly puzzled if I had been told at the time that some people to whom I had explained that elastic materials do not minimize their potential energy would still stick to that fake physical principle twenty years after, after having conscientiously misled gener- ations of students about that. I could hardly have understood either that it was possible that some people mistake Homogenization and Γ-convergence; certainly, a much better insight could be gained by using Ennio DE GIORGI's possibility of using general topologies, for example by considering the topology according to what my own approach of Homogenization/Compensated Compactness suggested. For various reasons, there are different groups of people who insist in attributing my ideas to their friends or themselves, and they do not seem aware that every good mathematician can observe that they do not understand well the methods that they use, and this casts a doubt on the fact that they could have 1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA. 1 initialized them; I usually explain in detail who had contributed about all the ideas that I know, and why the ones which I introduced myself had become natural to me, and some of these people even go down to insult me because I explain what are the ideas that I had introduced and the mistakes that some reasonably good mathematicians have made. Some of these people often pretend to answer questions of Continuum Mechanics by using Γ-convergence, but their limited understanding of Continuum Mechanics is too obvious to be missed, and although what they do is nonsense from the point of view of Continuum Mechanics it does not mean that one cannot use Γ-convergence for doing something useful in Continuum Mechanics, but for that one has to be more inventive concerning the topology that one chooses. Ennio DE GIORGI was a giant, and his ideas have had an important impact on some questions of Analysis and Geometry; as I have mentioned elsewhere, he gave me the feeling that he was interested in Mechanics but as he had not learned much in this direction I thought that he was trying to reinvent the field; his ideas have been important concerning the regularity of solutions of elliptic or parabolic partial differential equations and convergence effects related to minimization, but one cannot ignore the fact that most Continuum Mechanics or Physics is not about minimization, and that many equations are actually hyperbolic. Ennio DE GIORGI should have told his followers to learn a little about Continuum Mechanics, and as I have oriented my own research work towards overcoming the challenges coming from Continuum Mechanics or Physics, I want to offer all my contributions to his memory, hoping that it would deter many from propagating their erroneous views about Mechanics while using the name of Ennio DE GIORGI as a shield, because misleading was too opposed to his character, and he was a man of utmost integrity whom I admired for his religious approach to life, although a little different from mine. Those who feel the urge to attribute my ideas to others who have not done much and do not even understand them could then instead attribute them to Ennio DE GIORGI, as a token of appreciation of his mathematical contributions. Homogenization is a theory about partial differential equations, which may be elliptic, parabolic, hyper- bolic or neither, and although unphysical minimization processes may well be useful for technical reasons (as a way to prove existence of some solutions, for example), one should observe that most partial differential equations are not about minimizing anything. However, Fran¸coisMURAT and I were actually led to these questions by starting from an academic minimization problem, and I have described the chronology of this approach in [Tar1]. Γ-convergence is a theory about functionals, and the order relation of the real line plays a role and there are plenty of small minimization problems hidden in the definition. As a first step towards appreciating the differences between the two theories, I think that it is useful to describe a few basic facts about Continuum Mechanics and Physics. As more space would be needed for explaining some technical questions related to my subject, I do plan to write more articles later. Does Nature minimize or conserve energy? In 1848, STOKES [Sto1] explained a discrepancy which CHALLIS [Cha] had noticed concerning some solutions of the equations of compressible gas dynamics, which POISSON [Pois] had obtained in an implicit form in 1808, by showing that solutions could approach a discontinuity in finite time; by using conservation of mass and conservation of momentum he had then correctly derived the jump conditions that discontinuous solutions must satisfy. These jump conditions are now interpreted as meaning that the discontinuous func- tions satisfy a partial differential equation in the sense of distributions, as developped by Laurent SCHWARTZ, following the pioneer work of Sergei SOBOLEV and of Jean LERAY. After STOKES,RIEMANN [Rie] derived independently the jump conditions (for isentropic motions) in his thesis in 1860, but instead of being called the Stokes{Riemann conditions, the jump conditions are now named after RANKINE [Ran] and HUGONIOT [Hug]. However, when STOKES edited his complete works in 1880 [Sto2], he did not reproduce there his 1848 proof of the jump conditions, and instead he apologized for having made a mistake, because he had been (wrongly) convinced by Lord RAYLEIGH and THOMSON (later to become Lord KELVIN), that his discontinuous solutions were not physical: they did not conserve energy. So in the third part of the 19th Century, good physicists were adamant: energy is conserved! KELVIN,RAYLEIGH and STOKES must have understood later that heat is a form of energy, and that the missing energy in STOKES's discontinuous solutions of (isentropic) gas dynamics is transformed into heat, which does make the temperature of the gas increase, but since that possibility is not allowed in the 2 mathematical model this energy is \apparently lost"; in other terms, these three great scientists had not grasped yet why one needs a notion of \internal energy", although it seems that WATT and CARNOT had understood much earlier (and independently) that mechanical energy may be transformed into heat and heat may be transformed into mechanical energy, but with inherent limitations about the proportion of mechanical energy which can be recovered after it has been transformed into heat.
Recommended publications
  • The Cell Method: a Purely Algebraic Computational Method in Physics and Engineering Copyright © Momentum Press®, LLC, 2014
    THE CELL METHOD THE CELL METHOD A PURELY ALGEBRAIC COMPUTATIONAL METHOD IN PHYSICS AND ENGINEERING ELENA FERRETTI MOMENTUM PRESS, LLC, NEW YORK The Cell Method: A Purely Algebraic Computational Method in Physics and Engineering Copyright © Momentum Press®, LLC, 2014. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other—except for brief quotations, not to exceed 400 words, without the prior permission of the publisher. First published by Momentum Press®, LLC 222 East 46th Street, New York, NY 10017 www.momentumpress.net ISBN-13: 978-1-60650-604-2 (hardcover) ISBN-10: 1-60650-604-8 (hardcover) ISBN-13: 978-1-60650-606-6 (e-book) ISBN-10: 1-60650-606-4 (e-book) DOI: 10.5643/9781606506066 Cover design by Jonathan Pennell Interior design by Exeter Premedia Services Private Ltd. Chennai, India 10 9 8 7 6 5 4 3 2 1 Printed in the United States of America CONTENTS ACKNOWLEDGMENTS vii PREFACE ix 1 A COMpaRISON BETWEEN ALGEBRAIC AND DIFFERENTIAL FORMULATIONS UNDER THE GEOMETRICAL AND TOPOLOGICAL VIEWPOINTS 1 1.1 Relationship Between How to Compute Limits and Numerical Formulations in Computational Physics 2 1.1.1 Some Basics of Calculus 2 1.1.2 The e − d Definition of a Limit 4 1.1.3 A Discussion on the Cancelation Rule for Limits 8 1.2 Field and Global Variables 15 1.3 Set Functions in Physics 20 1.4 A Comparison Between the Cell Method and the Discrete Methods 21 2 ALGEBRA AND THE GEOMETRIC INTERPRETATION
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • President's Report
    AWM ASSOCIATION FOR WOMEN IN MATHE MATICS Volume 36, Number l NEWSLETTER March-April 2006 President's Report Hidden Help TheAWM election results are in, and it is a pleasure to welcome Cathy Kessel, who became President-Elect on February 1, and Dawn Lott, Alice Silverberg, Abigail Thompson, and Betsy Yanik, the new Members-at-Large of the Executive Committee. Also elected for a second term as Clerk is Maura Mast.AWM is also pleased to announce that appointed members BettyeAnne Case (Meetings Coordi­ nator), Holly Gaff (Web Editor) andAnne Leggett (Newsletter Editor) have agreed to be re-appointed, while Fern Hunt and Helen Moore have accepted an extension of their terms as Member-at-Large, to join continuing members Krystyna Kuperberg andAnn Tr enk in completing the enlarged Executive Committee. I look IN THIS ISSUE forward to working with this wonderful group of people during the coming year. 5 AWM ar the San Antonio In SanAntonio in January 2006, theAssociation for Women in Mathematics Joint Mathematics Meetings was, as usual, very much in evidence at the Joint Mathematics Meetings: from 22 Girls Just Want to Have Sums the outstanding mathematical presentations by women senior and junior, in the Noerher Lecture and the Workshop; through the Special Session on Learning Theory 24 Education Column thatAWM co-sponsored withAMS and MAA in conjunction with the Noether Lecture; to the two panel discussions thatAWM sponsored/co-sponsored.AWM 26 Book Review also ran two social events that were open to the whole community: a reception following the Gibbs lecture, with refreshments and music that was just right for 28 In Memoriam a networking event, and a lunch for Noether lecturer Ingrid Daubechies.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Sinai Awarded 2014 Abel Prize
    Sinai Awarded 2014 Abel Prize The Norwegian Academy of Sci- Sinai’s first remarkable contribution, inspired ence and Letters has awarded by Kolmogorov, was to develop an invariant of the Abel Prize for 2014 to dynamical systems. This invariant has become Yakov Sinai of Princeton Uni- known as the Kolmogorov-Sinai entropy, and it versity and the Landau Insti- has become a central notion for studying the com- tute for Theoretical Physics plexity of a system through a measure-theoretical of the Russian Academy of description of its trajectories. It has led to very Sciences “for his fundamen- important advances in the classification of dynami- tal contributions to dynamical cal systems. systems, ergodic theory, and Sinai has been at the forefront of ergodic theory. mathematical physics.” The He proved the first ergodicity theorems for scat- Photo courtesy of Princeton University Mathematics Department. Abel Prize recognizes contribu- tering billiards in the style of Boltzmann, work tions of extraordinary depth he continued with Bunimovich and Chernov. He Yakov Sinai and influence in the mathemat- constructed Markov partitions for systems defined ical sciences and has been awarded annually since by iterations of Anosov diffeomorphisms, which 2003. The prize carries a cash award of approxi- led to a series of outstanding works showing the mately US$1 million. Sinai received the Abel Prize power of symbolic dynamics to describe various at a ceremony in Oslo, Norway, on May 20, 2014. classes of mixing systems. With Ruelle and Bowen, Sinai discovered the Citation notion of SRB measures: a rather general and Ever since the time of Newton, differential equa- distinguished invariant measure for dissipative tions have been used by mathematicians, scientists, systems with chaotic behavior.
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • Selected Papers
    Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Professor Richard Courant (1888 – 1972)
    Professor Richard Courant (1888 – 1972) From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Richard_Courant Field: Mathematics Institutions: University of Göttingen University of Münster University of Cambridge New York University Alma mater: University of Göttingen Doctoral advisor: David Hilbert Doctoral students: William Feller Martin Kruskal Joseph Keller Kurt Friedrichs Hans Lewy Franz Rellich Known for: Courant number Courant minimax principle Courant–Friedrichs–Lewy condition Biography: Courant was born in Lublinitz in the German Empire's Prussian Province of Silesia. During his youth, his parents had to move quite often, to Glatz, Breslau, and in 1905 to Berlin. He stayed in Breslau and entered the university there. As he found the courses not demanding enough, he continued his studies in Zürich and Göttingen. Courant eventually became David Hilbert's assistant in Göttingen and obtained his doctorate there in 1910. He had to fight in World War I, but he was wounded and dismissed from the military service shortly after enlisting. After the war, in 1919, he married Nerina (Nina) Runge, a daughter of the Göttingen professor for Applied Mathematics, Carl Runge. Richard continued his research in Göttingen, with a two-year period as professor in Münster. There he founded the Mathematical Institute, which he headed as director from 1928 until 1933. Courant left Germany in 1933, earlier than many of his colleagues. While he was classified as a Jew by the Nazis, his having served as a front-line soldier exempted him from losing his position for this particular reason at the time; however, his public membership in the social-democratic left was a reason for dismissal to which no such exemption applied.[1] After one year in Cambridge, Courant went to New York City where he became a professor at New York University in 1936.
    [Show full text]
  • Scientific Curriculum of Emanuele Haus
    Scientific curriculum of Emanuele Haus October 25, 2018 Personal data • Date of birth: 31st July 1983 • Place of birth: Milan (ITALY) • Citizenship: Italian • Gender: male Present position • (December 2016 - present): Fixed-term researcher (RTD-A) at the University of Naples “Federico II”. Previous positions • (November 2016 - December 2016): Research collaborator (“co.co.co.”) at the University of Roma Tre, within the ERC project “HamPDEs – Hamil- tonian PDEs and small divisor problems: a dynamical systems approach” (principal investigator: Michela Procesi). • (August 2014 - July 2016): “assegno di ricerca” (post-doc position) at the University of Naples “Federico II”, within the STAR project “Water waves, PDEs and dynamical systems with small divisors” (principal investi- gator: Pietro Baldi) and the ERC project “HamPDEs – Hamiltonian PDEs and small divisor problems: a dynamical systems approach” (principal in- vestigator: Michela Procesi, local coordinator: Pietro Baldi). • (March 2013 - July 2014): “assegno di ricerca” (post-doc position) at the University of Rome “La Sapienza”, within the ERC project “HamPDEs – Hamiltonian PDEs and small divisor problems: a dynamical systems approach” (principal investigator: Michela Procesi). • (January 2012 - December 2012): post-doc position at the Labora- toire de Mathématiques “Jean Leray” (Nantes), within the ANR project “HANDDY – Hamiltonian and Dispersive equations: Dynamics” (principal investigator: Benoît Grébert). Abilitazione Scientifica Nazionale (National Scientific Qualification) • In 2018, I have obtained the Italian Abilitazione Scientifica Nazionale for the rôle of Associate Professor in the sector 01/A3 (Mathematical Analysis, Probability and Mathematical Statistics). Qualification aux fonctions de Maître de Conférences • In 2013, I have obtained the French Qualification aux fonctions de Maître de Conférences in Mathematics (section 25 of CNRS).
    [Show full text]
  • The Mathematical Heritage of Henri Poincaré
    http://dx.doi.org/10.1090/pspum/039.1 THE MATHEMATICAL HERITAGE of HENRI POINCARE PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 39, Part 1 THE MATHEMATICAL HERITAGE Of HENRI POINCARE AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 39 PROCEEDINGS OF THE SYMPOSIUM ON THE MATHEMATICAL HERITAGE OF HENRI POINCARfe HELD AT INDIANA UNIVERSITY BLOOMINGTON, INDIANA APRIL 7-10, 1980 EDITED BY FELIX E. BROWDER Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-22916 1980 Mathematics Subject Classification. Primary 01-XX, 14-XX, 22-XX, 30-XX, 32-XX, 34-XX, 35-XX, 47-XX, 53-XX, 55-XX, 57-XX, 58-XX, 70-XX, 76-XX, 83-XX. Library of Congress Cataloging in Publication Data Main entry under title: The Mathematical Heritage of Henri Poincare\ (Proceedings of symposia in pure mathematics; v. 39, pt. 1— ) Bibliography: p. 1. Mathematics—Congresses. 2. Poincare', Henri, 1854—1912— Congresses. I. Browder, Felix E. II. Series: Proceedings of symposia in pure mathematics; v. 39, pt. 1, etc. QA1.M4266 1983 510 83-2774 ISBN 0-8218-1442-7 (set) ISBN 0-8218-1449-4 (part 2) ISBN 0-8218-1448-6 (part 1) ISSN 0082-0717 COPYING AND REPRINTING. Individual readers of this publication, and nonprofit librar• ies acting for them are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in re• views provided the customary acknowledgement of the source is given.
    [Show full text]
  • 2003 Jean-Pierre Serre: an Overview of His Work
    2003 Jean-Pierre Serre Jean-Pierre Serre: Mon premier demi-siècle au Collège de France Jean-Pierre Serre: My First Fifty Years at the Collège de France Marc Kirsch Ce chapitre est une interview par Marc Kirsch. Publié précédemment dans Lettre du Collège de France,no 18 (déc. 2006). Reproduit avec autorisation. This chapter is an interview by Marc Kirsch. Previously published in Lettre du Collège de France, no. 18 (déc. 2006). Reprinted with permission. M. Kirsch () Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France e-mail: [email protected] H. Holden, R. Piene (eds.), The Abel Prize, 15 DOI 10.1007/978-3-642-01373-7_3, © Springer-Verlag Berlin Heidelberg 2010 16 Jean-Pierre Serre: Mon premier demi-siècle au Collège de France Jean-Pierre Serre, Professeur au Collège de France, titulaire de la chaire d’Algèbre et Géométrie de 1956 à 1994. Vous avez enseigné au Collège de France de 1956 à 1994, dans la chaire d’Algèbre et Géométrie. Quel souvenir en gardez-vous? J’ai occupé cette chaire pendant 38 ans. C’est une longue période, mais il y a des précédents: si l’on en croit l’Annuaire du Collège de France, au XIXe siècle, la chaire de physique n’a été occupée que par deux professeurs: l’un est resté 60 ans, l’autre 40. Il est vrai qu’il n’y avait pas de retraite à cette époque et que les pro- fesseurs avaient des suppléants (auxquels ils versaient une partie de leur salaire). Quant à mon enseignement, voici ce que j’en disais dans une interview de 19861: “Enseigner au Collège est un privilège merveilleux et redoutable.
    [Show full text]