Using in Situ Flow Cytometry Images of Ciliates and Dinoflagellates for Aquatic System Monitoring G

Total Page:16

File Type:pdf, Size:1020Kb

Using in Situ Flow Cytometry Images of Ciliates and Dinoflagellates for Aquatic System Monitoring G Brazilian Journal of Biology http://dx.doi.org/10.1590/1519-6984.05016 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Using in situ flow cytometry images of ciliates and dinoflagellates for aquatic system monitoring G. C. Pereiraa*, A. R. Figueiredoa and N. F. F. Ebeckena aPrograma de Engenharia Civil, Núcleo de Transferência de Tecnologia – NTT, Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia – COPPE, Centro de Tecnologia, Universidade Federal do Rio de Janeiro – UFRJ, Cidade Universitária, Av. Athos da Silveira Ramos, 149, Ilha do Fundão, CEP 21941-909, Rio de Janeiro, RJ, Brazil *e-mail: [email protected] Received: April 1, 2016 – Accepted: October 4, 2016 – Distributed: May 31, 2018 (With 4 figures) Abstract Short-period variability in plankton communities is poorly documented, especially for variations occurring in specific groups in the assemblage because traditional analysis is laborious and time-consuming. Moreover, it does not allow the high sampling frequency required for decision making. To overcome this limitation, we tested the submersible CytoSub flow cytometer. This device was anchored at a distance of approximately 10 metres from the low tide line at a depth of 1.5 metres for 12 hours to monitor the plankton at a site in the biological reserve of Barra da Tijuca beach, Rio de Janeiro. Data analysis was performed with two-dimensional scatter plots, individual pulse shapes and micro images acquisition. High-frequency monitoring results of two interesting groups are shown. The abundance and carbon biomass of ciliates were relatively stable, whereas those from dinoflagellates were highly variable along the day. The linear regression of biovolume measures between classical microscopy and in situ flow cytometry demonstrate high degree of adjustment. Despite the success of the trial and the promising results obtained, the large volume of images generated by the method also creates a need to develop pattern recognition models for automatic classification of in situ cytometric images. Keywords: aquatic systems, microbial ecology, in situ flow cytometry, method. Usando imagem de citometria de fluxo in situ de ciliados e dinoflagelados para o monitoramento de sistemas aquáticos Resumo A variabilidade de curto período em comunidades do plâncton é pouco documentada, especialmente as variações que ocorrem em grupos específicos das assembleias por causa das análises tradicionais serem muito trabalhosas e demoradas. Além disso, não permitem que a alta frequência amostral necessária para a tomada de decisão. Para superar esta limitação, nós testamos o CytoSub, um citômetro de fluxo submersível. Este aparelho foi ancorado a aproximadamente 10 metros de distância da linha de maré baixa a uma profundidade de 1,5 metros por 12 horas para monitorar o plâncton em um sítio da reserva biológica da praia da Barra da Tijuca, Rio de Janeiro. A análise dos dados foi realizada a partir de gráficos de dispersão bidimensionais, pelas assinaturas ópticas individuais escaneadas pulse( shape profile) e aquisição de micro imagens. Resultados do monitoramento de alta frequência de dois grupos interessantes são apresentados. A abundância e a biomassa de carbono de um grupo de ciliados foram relativamente estáveis, ao passo que o grupo de dinoflagelado, foi altamente variável ao longo do dia. O modelo de regressão linear das medidas de biovolume entre a clássica microscopia e a citometria de fluxo in situ apresentou alto grau de ajustamento. Apesar do sucesso deste ensaio e dos resultados promissores obtidos, o grande volume de imagens geradas por este método também gerou a necessidade de se desenvolver modelos de reconhecimento de padrões para a classificação automática de imagens de citometria in situ. Palavras-chave: sistemas aquáticos, ecologia microbiana, citometria de fluxo in situ, método. 1. Introduction The distribution of marine plankton is highly variable and the habitat factors determining community assemblages in space and time (Bricaud et al., 2012; Batchelder et al., contribute to this variability. Informations about such 2012). The occurrence of geographical variation in nature variability are obtained from different sampling approaches. 240 240/247 Braz. J. Biol. 2018, vol. 78, no. 2, pp. 240-247 Image in flow for aquatic monitoring These approaches involve a range of classical techniques and biomass variation of both groups given the great (Utermöhl, 1958; Hobbie et al., 1977 or Brito at al., 2013) importance in trophic dynamics of pelagic systems, as and devices, including vessel-based equipment, anchored key organisms connecting the microbial loop with the instruments used for in vivo chlorophyll measurements and classical food chain. satellite observations from which the colour of the sea can be determined (Del Giorgio et al., 1996; Dickey, 2001). 2. Material and Methods Phytoplankton populations, for example, display metabolic diversity and a high degree of physiological plasticity (Platt, 2.1. Study site 1981), but their buffering capacity is low (Smayda, 1998). The study was conducted at a fixed site Thus, these populations respond quickly to external forcing (23°00`51.62``S, 43°23`45.10``W) in the biological reserve factors. This responsiveness allows them to serve as good of Barra da Tijuca beach, western of Rio de Janeiro city. It is indicators of environmental conditions. However, our located within the boundaries of the Marapendi ecological understanding of phytoplankton population dynamics and park. This park offers a very attractive natural landscape the factors regulating their populations at meso and micro (Figure 1) displaying white sandbars deposited during the scales remains limited due to our inability to measure the past 5100 years (Roncarati and Menezes, 2005) covered by species composition, size distribution and growth rates of restinga fixing vegetation. The beach, used recreationally phytoplankton (Sosik et al., 2003). The composition and by the population, is on a spit is crossed by Sernambetiba size structure of plankton, for instance, helps to determine Avenue, which provides access to the area. The coastal the carbon and nutrient flows through the ecosystem and seawater is always green. Due to the coastal drain and the can be an important indicator of the response of coastal effects of submarine outfalls, the water shows a degree of environments to anthropogenic disturbances, such as nutrient eutrophication. The seawater temperature, measured by or pollutant inputs. Harmful algal blooms or outbreaks of a reversing thermometer, ranged from 19.3 °C to 20.5 °C toxic organisms (Anderson et al., 2002) commonly coexist during the day, whereas the salinity remained at 35.7 ppm. with species that have similar ecological requirements and The salinity was measured with a Milwaukee MA887 digital environmental tolerances, later called functional groups refractometer (Milwaukee, WI, USA). (Nair et al., 2008). 2.2. Data acquisition However, with the exception of the information furnished by several laboratory experiments (Tillmann, 2004; Rosetta For cytometric data acquisitions, the standard and McManus, 2003; Alonso et al., 2000), little is known CytoSense flow cytometry instrument (CytoBuoy bv, about the functional characteristics of protozooplankton Worden, The Netherlands) was be made submersible (ciliates and microflagellates) and of metazoans or the (CytoSub) by adding a specially designed stainless steel interactions occurring in the overall assemblage, e.g., the housing. The device was connected to a unit converter for interactions among zooplankton, phytoplankton, bacteria power and data transfer from a simple kiosk on the shore and viruses. The first prerequisite for a more realistic in the late summer (March). A long, high-quality cable understanding of the interactions among the factors that is used to attach the device to the converter (Figure 2a). regulate species composition is the availability of detailed The instrument can be connected to the Internet for remote and continuous long-term observations. This type of operation and can detect and record large suspended observation has become possible because new instruments particles (> 1-1000 mm diameter) in relatively large were developed and made available for use in the continuous volumes of water (more than 4 cm3 per sample). The water monitoring of specific organisms or groups Pereira( et al., is pumped into a flow chamber to avoid external turbulence. 2016; Bergkvist et al., 2012, Campbel et al., 2010). However, The flow is controlled by a peristaltic pump. The speed these instruments produced substantial amounts of data. of the pump is adjustable and was set at 7.8 mm3 s-1 for In this context, models based on cytometric signatures have this experiment. The sheath fluid “runs” at a rate of been successfully developed and applied (Embleton et al., 80 cm3 min-1. Each suspended particle crosses a 5 µm 2003; Kenneth et al., 2008; Pereira and Ebecken, 2011). blue laser beam (Coherent Saphyre, 488 nm, 15 mW). The in situ scanning flow cytometry (SFC) technique, The laterally scattered light signals (side scatter, SWS) in conjunction with an add-on image-in-flow module, and the signals from fluorescence within the chamber are represents one of the most promising technologies for dispersed by a concave holographic grating and collected addressing the gap of knowledge in this area. This approach with a hybrid photomultiplier device (HPMT). This optical can be used to study the microscopic constituents of design
Recommended publications
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • Pusillus Poseidon's Guide to Protozoa
    Pusillus Poseidon’s guide to PROTOZOA GENERAL NOTES ABOUT PROTOZOANS Protozoa are also called protists. The word “protist” is the more general term and includes all types of single-celled eukaryotes, whereas “protozoa” is more often used to describe the protists that are animal-like (as opposed to plant-like or fungi-like). Protists are measured using units called microns. There are 1000 microns in one millimeter. A millimeter is the smallest unit on a metric ruler and can be estimated with your fingers: The traditional way of classifying protists is by the way they look (morphology), by the way they move (mo- tility), and how and what they eat. This gives us terms such as ciliates, flagellates, ameboids, and all those colors of algae. Recently, the classification system has been overhauled and has become immensely complicated. (Infor- mation about DNA is now the primary consideration for classification, rather than how a creature looks or acts.) If you research these creatures on Wikipedia, you will see this new system being used. Bear in mind, however, that the categories are constantly shifting as we learn more and more about protist DNA. Here is a visual overview that might help you understand the wide range of similarities and differences. Some organisms fit into more than one category and some don’t fit well into any category. Always remember that classification is an artificial construct made by humans. The organisms don’t know anything about it and they don’t care what we think! CILIATES Eats anything smaller than Blepharisma looks slightly pink because it Blepharisma itself, even smaller Bleph- makes a red pigment that senses light (simi- arismas.
    [Show full text]
  • Biotic and Abiotic Factors Affecting the Population Dynamics of Ceratium
    diversity Article Biotic and Abiotic Factors Affecting the Population Dynamics of Ceratium hirundinella, Peridinium cinctum, and Peridiniopsis elpatiewskyi Behrouz Zarei Darki 1,* and Alexandr F. Krakhmalnyi 2 1 Department of Marine Biology, Faculty of Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Mazandaran Province, Iran 2 Institute for Evolutionary Ecology, NAS of Ukraine, 37, Lebedeva St., 03143 Kiev, Ukraine * Correspondence: [email protected] Received: 23 July 2019; Accepted: 2 August 2019; Published: 15 August 2019 Abstract: The present research was conducted to assess the impact of abiotic and biotic factors on the growth of freshwater dinoflagellates such as Ceratium hirundinella, Peridinium cinctum, and Peridiniopsis elpatiewskyi, which reduce the quality of drinking water in the Zayandeh Rud Reservoir. To this end, 152 algal and zoological samples were collected from the reservoir located in the Central part of Iran in January, April, July, and October 2011. Abiotic factors such as pH, temperature, conductivity, transparency, dissolved oxygen, and nutrient concentration of the water were measured in all study stations. The results showed that the population dynamics of dinoflagellates in the Zayandeh Rud Reservoir was different depending on season, station, and depth. The findings proved that C. hirundinella was one of the dominant autumn planktons in the highest biovolume in the Zayandeh Rud Reservoir. While P. elpatiewskyi was present in the reservoir throughout a year with biovolume peak in summer. Accompanying bloom of P. elpatiewskyi and C. hirundinella, P. cinctum also grew in well-heated summer and autumn waters. It was further found that Ceratium density was positively correlated with sulfate ion concentrations, while the growth of P.
    [Show full text]
  • Mixotrophy Among Dinoflagellates1
    J Eukaryn Microbiol.. 46(4). 1999 pp. 397-401 0 1999 by the Society of Protozoologists Mixotrophy among Dinoflagellates’ DIANE K. STOECKER University of Maryland Center for Environmentul Science, Horn Point Laboratory, P.O. Box 775, Cambridge, Marylund 21613, USA ABSTRACT. Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales, Gymnodiniales, Noctilucales, Gon- yaulacales, Peridiniales, Blastodiniales, Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance, availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse
    [Show full text]
  • Metabarcoding Analysis of Prey Composition of the Copepod Calanus Finmarchicus in Regions of the North Atlantic Ocean Heidi Yeh [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OpenCommons at University of Connecticut University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 7-16-2018 Metabarcoding Analysis of Prey Composition of the Copepod Calanus finmarchicus in Regions of the North Atlantic Ocean Heidi Yeh [email protected] Recommended Citation Yeh, Heidi, "Metabarcoding Analysis of Prey Composition of the Copepod Calanus finmarchicus in Regions of the North Atlantic Ocean" (2018). Master's Theses. 1257. https://opencommons.uconn.edu/gs_theses/1257 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Metabarcoding Analysis of Prey Composition of the Copepod Calanus finmarchicus in Regions of the North Atlantic Ocean Heidi Yeh B.A., Barnard College, Columbia University, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science At the University of Connecticut 2018 Copyright by Heidi Yeh 2018 ii APPROVAL PAGE Masters of Science Thesis Metabarcoding Analysis of Prey Composition of the Copepod Calanus finmarchicus in Regions of the North Atlantic Ocean Presented by Heidi Yeh, B.A. Major Advisor________________________________________________________________ Ann Bucklin Associate Advisor_______________________________________________________________ Senjie Lin Associate Advisor_______________________________________________________________ George McManus University of Connecticut 2018 iii ACKNOWLEDGEMENTS Many people have provided support and encouragement over the course of this research project. I would like to thank my advisor, Ann Bucklin.
    [Show full text]
  • Zooxanthellae) ROB ROWAN* and DENNIS A
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3639-3643, April 1992 Plant Biology Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae) ROB ROWAN* AND DENNIS A. POWERS Department of Biological Sciences, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950-3094 Communicated by Winslow R. Briggs, December 23, 1991 ABSTRACT Zooxanthellae are unicellular algae that oc- systematics can be obviated by applying molecular methods. cur as endosymbionts in many hundreds of common marine DNA sequences are excellent phylogenetic data (for reviews, invertebrates. The issue of zooxanthella diversity has been see refs. 15 and 16) that are especially useful for identifying difficult to address. Most zooxanthellae have been placed in the and classifying morphologically depauperate organisms like dinoflagellate genus Symbiodinium as one or several species that zooxanthellae. Furthermore, Symbiodinium genes can be are not easily distinguished. We compared Symbiodinium and obtained from intact symbioses using the polymerase chain nonsymbiotic dinoflageliates using small ribosomal subunit reaction (PCR; ref. 17), removing the obstacle of culturing RNA sequences. Surprisingly, small ribosomal subunit RNA zooxanthellae for the purpose of taxonomy (18). diversity within the genus Symbiodinium is comparable to that Various DNA sequences evolve at very different rates; observed among different orders of nonsymbiotic dinoflagel- which sequences are informative for a group depends upon lates. These data reinforce the conclusion that Symbiodinium- how closely related its members are. Having no a priori like zooxanthellae represent a collection of distinct species and information for Symbiodinium, we examined nuclear genes provide a precedent for a molecular genetic taxonomy of the that encode small ribosomal subunit RNA (ssRNA; 16S-like genus Symbiodinium.
    [Show full text]
  • Gymnodinium Brown Tide in the Magellanic Fjords, Southern Chile
    Revista de Biología Marina y Oceanografía 36 (2): 155 - 164, diciembre de 2001 Gymnodinium Brown Tide in the Magellanic Fjords, Southern Chile Marea café provocada por Gymnodinium en los fiordos magallánicos (Sur de Chile) Juan Carlos Uribe & Milena Ruiz Instituto de la Patagonia, Universidad de Magallanes P.O. Box 113-D, Punta Arenas, Chile. [email protected] Abstract.- In April 1999, a brown tide was recorded in the Resumen.- En abril de 1999 se registró una marea café en Magellanic fjords, Southern Chile. The causative taxa were la región de fiordos y canales magallánicos. Los taxa two unidentified morphs of Gymnodinium that resemble causantes fueron dos morfos no identificados de Gymnodinium mikimotoi Miyake et Kominami ex Oda. Gymnodinium, los que guardan un parecido con Gymnodinium Although there were many reports from fishermen about water mikimotoi Miyake et Kominami ex Oda. Aunque hubo discolorations along the region, just two localities were numerosos informes de pescadores acerca de discoloraciones sampled by scientific personnel: the oceanic entrance of Canal a lo largo de la región, sólo dos localidades fueron Abra (53°22’ S – 73° 25’ W) and Punta Carrera (53° 35’ S– investigadas por personal científico: la entrada oceánica de 70° 55’ W), which is situated in the Strait of Magellan. After canal Abra (53°22’ S – 73° 25’ W) y punta Carrera (53° 35’ discolorations, Gymnodinium concentrations ranged between S– 70° 55’ W), que se encuentra en el estrecho de Magallanes. 3,000 to 43,000 cells L-1. The Gymnodinium bloom lasted Las concentraciones de Gymnodinium, evaluadas después de for about three weeks in the fjords.
    [Show full text]
  • The Evolution of Silicon Transport in Eukaryotes Article Open Access
    The Evolution of Silicon Transport in Eukaryotes Alan O. Marron,*1,2 Sarah Ratcliffe,3 Glen L. Wheeler,4 Raymond E. Goldstein,1 Nicole King,5 Fabrice Not,6,7 Colomban de Vargas,6,7 and Daniel J. Richter5,6,7 1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom 4Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, United Kingdom 5Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 6CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France 7Sorbonne Universite´s, Universite´ Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France *Corresponding author: E-mail: [email protected]. Associate editor: Lars S. Jermiin Abstract Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls.
    [Show full text]
  • A Guide to Marine Plankton
    "Knowledge of the oceans is more than a matter of curiosity. Our very survival may hinge upon it.“ - John F. Kennedy - Quick Plankton Guide Conscinodiscus Chaetoceros Chaetoceros Ditylum Navicula Cylindrotheca Stephanopyxis Thalassionema dinoflagellate dinoflagellate dinoflagellate Licmorpha Protoperidinium Ceratium Ceratium ciliates radiolarian foramniferan jelly medusa jelly medusa ctenophore ctenophore Oweniidae larva Quick Plankton Guide polychaete larvae arrow worm snail veliger pteropod bivalve veliger cladoceran copepod nauplius copepod cumacean krill barnacle nauplius barnacle cyprid shrimp crab zoea crab megalop urchin larva sea star larva tunicate larva fish egg fish larva Diatoms Taxonomy Size Kingdom: Protista 5-60 µm Phylum: Bacillariophyta chains can be longer Diatoms are single-celled algae, usually golden-brown or yellow-green. Diatoms typically dominate the phytoplankton community in temperate regions. They are important producers, forming the base of ocean food chains. Diatoms are probably the single most important food source in the ocean. Energy source Sun - Diatoms are photosynthesizers. Predators Zooplankton. Life span A few days to a few weeks. Viewing tips To see phytoplankton well, you typically need 100X magnification or greater. It is easy to flood plankton with too much light, so reduce light and illuminate the slide from below. Interesting facts Diatoms produce oxygen through the process of photosynthesis and, along with the other phytoplankton, are responsible for 50-85% of the Earth’s oxygen. Diatoms use oil and many spines to help stay afloat in the ocean. Some also form chains to increase their ability to float. Floating near the surface is important because diatoms need the sun to produce energy, and the sunlight only penetrates to approx.
    [Show full text]
  • Incidence of Heterotrophic Red Noctiluca Scintillans Bloom Along Chavakkad, Southwest Coast of India
    Indian Journal of Geo Marine Sciences Vol. 47 (08), August 2018, pp. 1648-1651 Incidence of heterotrophic red Noctiluca scintillans bloom along Chavakkad, southwest coast of India. KC Vijayalakshmy*, M Abhijith, MK Megha, AA Mohamed Hatha & A V Saramma Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Kochi - 682016, India. *[E. Mail: [email protected]] Received 19 January 2017; revised 30 March 2017 In the last few decades, south west coast of India has experienced massive inter monsoon blooms because of the unicellular siliceous diatoms due to nutrient enriched water from convective mixing and eutrophication. At latent phase of monsoon, these have been replaced by large red heterotrophic dinoflagellate, Noctiluca scintillans which results an oxygen deficient condition in euphotic zone. Here we communicate an extensive bloom of Noctiluca scintillans from Chavakkad, Kerala. [Key words: Noctiluca scintilans, Chavakkad, Cell size, Eutrophication] Introduction Materials and Methods. The Southwest coast of India is prone to algal From the bloom area Chavakkad (10° 33' 9.4932'' blooms in monsoon season as a result of upwelling N & 76° 0' 57.0708'' E) (Fig: 1), 50 litres of surface and high riverine discharge. A massive bloom was water was filtered through phytoplankton net made observed along the coast of Chavakkad (10° 33' of bolting silk with a mesh size of 20μm. The cells 9.4932'' N & 76° 0' 57.0708'' E) Kerala, India for a were preserved in 3% neutralized formaldehyde and period of one week beginning from 9th September Lugol’s iodine solution.
    [Show full text]
  • Harmful Algae News
    1 The Intergovernmental Oceanographic Commission of UNESCO May 2008 HARMFUL ALGAE NEWS An IOC Newsletter on toxic algae and algal blooms http://ioc.unesco.org/hab/news.htm No. 36 • Turkey Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey The massive presence of consisting of white gelatinous material mid-autumn 2007 along the north- mucilaginous organic matter, resulting initially suspended at the surface and in eastern part of Marmara Sea with from planktonic and benthic algal the water column was noticed along the temperatures 18.4±1.0oC. It extended blooms, has become more frequent in Turkish coast of the Marmara Sea from Izmit Bay to the Dardanelles during many coastal waters around Europe, (especially Izmit Bay). Marmara Sea the calm weather period; it was denser especially in the Adriatic. The has a rather complex hydrological and of longer duration in Izmit Bay, appearance of mucilage in the Adriatic system, in a zone of transition between which is affected by intense industrial Sea has been reported periodically since dense (salinity 37- 38.5 ‰) and warmer activity, and which has a weaker 1800, with major mucus blooms during waters originating in the Mediterranean circulation compared to Marmara Sea. the 1990s [1]. The mucilage Sea, and cold, lower-salinity water (20- To identify phytoplankton species phenomenon of the Adriatic Sea had 22 ‰) coming from the Black Sea. The responsible for the mucilage, water usually been related to extracellular pycnocline lies at 10 to 30 m depth and samples were collected from surface organic matter of phytoplanktonic origin. varies seasonally [2].
    [Show full text]
  • A, I ~Tvr.T!T 1 L"'~~'" •
    FINAL RESEARCH REFORT TO U.S.Depa.rtment of Commerce National Oceanographic and Atmospheric Administration National Marine Fisheries Service Middle Atlantic Coastal Fisheries Center Sandy Hook Laboratory Highlands, New Jersey 07732 Institution University of Maryland College Park, r1aryland 20742 Title of Research Analysis of the Cilia+:.F>, Protozoa Associated '(I!i th the Man Induced Cha.nge to the Sublittoral .6nvironment of the Nelli York Bight: June, 1973 to February, 1975. Contract Humber 03-3-043-48 l' Princir~l Investigator I;' ,~ /?~J..;vtJ Eugene MAY 1 6 1975 Associate Freofessor Knee Me Nutty ~ Department of Zoology ~" 'vII. J:~JJj\.w..oINIJ.l 'tJ,.t;"" -..a, I ~tVr.t!t 1 l"'~~'" • Sampling for the ciliated protozoa present in the planktonic and benthic environments of the New York Bight has been continued over the past eight months under contract number 03-3-043-48 for the U.S. Department of Commerce. Objectives for this study included: a) determining the feasibility of qualita- tive and quantitative marine ciliate sampling, b) establishing and monitoring the presence of the populations of marine ciliates throughout a yearly cycle, and, c) correlating the presence of smallbactivorous ciliates with the presence of sewage pollution. Samples were concentrated during the autumn and early winter months in order to give a more complete representation of the full seasonal cycle of .planktonic ciliate populations. Data from the past tidO years of collections have been collated in the Appendix. This includes all data present in the six and twelve month reports, the report given last December, and the data presented herein for the first time.
    [Show full text]