Wentletrap Epitonium (Kanmacher, 1797)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Foliose seaweeds and coralline crusts in surge gully entrances MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2015-11-30 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/31]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2015. Foliose seaweeds and coralline crusts in surge gully entrances. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.31.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2015-11-30 Foliose seaweeds and coralline -
A Hitherto Unnoticed Adaptive Radiation: Epitoniid Species (Gastropoda: Epitoniidae) Associated with Corals (Scleractinia)
Contributions to Zoology, 74 (1/2) 125-203 (2005) A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia) Adriaan Gittenberger and Edmund Gittenberger National Museum of Natural History, P.O. Box 9517, NL 2300 RA Leiden / Institute of Biology, University Leiden. E-mail: [email protected] Keywords: Indo-Pacific; parasites; coral reefs; coral/mollusc associations; Epitoniidae;Epitonium ; Epidendrium; Epifungium; Surrepifungium; new species; new genera; Scleractinia; Fungiidae; Fungia Abstract E. sordidum spec. nov. ....................................................... 155 Epifungium gen. nov. .............................................................. 157 Twenty-two epitoniid species that live associated with various E. adgranulosa spec. nov. ................................................. 161 hard coral species are described. Three genera, viz. Epidendrium E. adgravis spec. nov. ........................................................ 163 gen. nov., Epifungium gen. nov., and Surrepifungium gen. nov., E. adscabra spec. nov. ....................................................... 167 and ten species are introduced as new to science, viz. Epiden- E. hartogi (A. Gittenberger, 2003) .................................. 169 drium aureum spec. nov., E. sordidum spec. nov., Epifungium E. hoeksemai (A. Gittenberger and Goud, 2000) ......... 171 adgranulosa spec. nov., E. adgravis spec. nov., E. adscabra spec. E. lochi (A. Gittenberger and Goud, 2000) .................. -
Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000). -
Of Oceanactis Diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis
JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2003, 8, 93--101 New Record of Oceanactis diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis N. P. Sanamyan Klrimchatka institute ofEcology and Environment, Ptxrtyzanskqya a Petrqpavlovsk-Ktzmchatslty, 683000, Russia E-niaiL' na([email protected] (Received 1 February 2002; Accepted 10 November 2002) The small, deep-water sea anemone Oceanactis diomedeae (McMurrich, 1893) is recorded for the first time since it was first described, living in muddy habitats of the Sea of Okhotsk. The genus Oceanactis Moseley, 1877 is considered synonymous with Oractts McMurrich, 1893 and is the only genus belonging to the family Oractiidae Riemann-ZUrneck, 2000. The invagina- "glandular tions of the oral dise or sacs", unique to the Oractiidae, are de- scribed and their possible function is discussed. Key Words: Actiniaria. Oractiidae, sea anemones, Sea of Okhotsk, taxon- omy. Introduction were Several specimens of Oceanactis diomedeae (McMurrich, 1893) found among other sea anemones collected in the Sea of Okhotsk. This species was de- scribed as Oractis diomedeae McMurrich, 1893 from several specimens collected in California (McMurrich 1893), The taxonomic status of Oractis McMurrich, 1893 was not clear for a long time: initially described as a fbrm related to Gonactinia Sars, 1851 (Gonactiniidae), it was referred to the Andresiidae by Carlgren (1931) and later to the Haloclavidae by Carlgren (1949). Stephenson (1935: 30) pointed out that Oractis is an unusual form, not fitting readily into any family. He considered "may it to be related to the Halcampoididae or it be an immature or aberrant Ilyan- thid." Recently Riemann-ZUrneck (2000) established a new family Oractiidae and described a second species belonging to this genus, Oractis bursijt?ra Riemann- ZUrneck, 20oo, based on a single specimen from the central Arctic deep sea in- (Amundsen Basin, 3ooOm). -
ABSTRACT Title of Dissertation: PATTERNS IN
ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range. -
Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. -
Marine Drugs ISSN 1660-3397 © 2006 by MDPI
Mar. Drugs 2006, 4, 70-81 Marine Drugs ISSN 1660-3397 © 2006 by MDPI www.mdpi.org/marinedrugs Special Issue on “Marine Drugs and Ion Channels” Edited by Hugo Arias Review Cnidarian Toxins Acting on Voltage-Gated Ion Channels Shanta M. Messerli and Robert M. Greenberg * Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA Tel: 508 289-7981. E-mail: [email protected] * Author to whom correspondence should be addressed. Received: 21 February 2006 / Accepted: 27 February 2006 / Published: 6 April 2006 Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels. Keywords: Cnidaria; ion channels; toxin; sodium channel; potassium channel. Abbreviations: KV channel, voltage-gated potassium channel; NaV, voltage-gated sodium channel; CaV, voltage-gated calcium channel; ApA, Anthopleurin A; ApB, Anthopleurin B; ATX II, Anemone sulcata toxin II; Bg II, Bunodosoma granulifera toxin II; Sh I, peptide neurotoxin I from Stichodactyla helianthus; RP II, polypeptide toxin II from Radianthus paumotensis; RP III, polypeptide toxin III from Radianthus paumotensis; RTX I, neurotoxin I from Radianthus macrodactylus; PaTX, toxin from Paracicyonis actinostoloides; Er I, peptide toxin I from Entacmaea ramsayi; Da I, peptide toxin I from Dofleinia armata; ATX III, Anemone sulcata toxin III; ShK, potassium channel toxin from Stichodactyla helianthus; BgK, potassium channel toxin from Bunodosoma granulifera; AsKS, kalciceptine from Anemonia sulcata; HmK, potassium channel toxin from Heteractis magnifica; AeK, potassium channel toxin from Actinia equina; AsKC 1-3, kalcicludines 1-3 from Anemonia sulcata; BDS-I, BDS-II, blood depressing toxins I and II Mar. -
BULLETIN (Mailed to Financial Members of the Society Within Victoria) Price 50¢ Conus Marmoreus EDITOR: Linne EDITOR Val Cram
THE MALACOLOGICAL SOCIETY OF AUSTRALASIA Inc. VICTORIAN BRANCH BULLETIN (Mailed to financial members of the Society within Victoria) Price 50¢ Conus marmoreus EDITOR: Linne EDITOR Val Cram. Tel. No. 9792 9163 ADDRESS: 6 Southdean Street, Dandenong, Vic. 3175 EMAIL: [email protected] VIC. BR. BULL. NO. 246 OCTOBER/NOVEMBER 2008 NOTICE OF MEETING The next meeting of the Branch will be held on the 20th October at the Melbourne Camera Club Building, cnr. Dorcas & Ferrars Sts South Melbourne at 8pm. This will be a Members Night. The November meeting will be held on the 17th. Our speaker Bryan Greig-Fry will talk about his research on marine venoms in Antarctica and Norway. This will be preceded by the annual meeting of the Branch and the election of Office Bearers. Raffles and supper as usual. At the annual meeting of the MSA, held prior to the August meeting of the Victorian Branch. Dr.Mark Norman stood down as President of the Society due to family reasons and work commitments. Nominations were received and the following positions filled: President: Fred Wells Vice President: Kirsten Benkendorff Secretary: Rebecca van Gelderen Treasurer: Don Colgan Membership officer: Dean Hewish Journal officer: Winston Ponder News letter officer: Des Beechey Council members: Fred Bunyard, Chris Bunyard, Don Cram, Bruce Livett and Geoff Macaulay Secretary Michael Lyons Tel. No. 9894 1526 Chairman Fred Bunyard Tel. No. 9439 2147 Printed courtesy of Steve Herberts Office, Parliamentary Member for Eltham VIC. BR. BULL. NO. 246 2. OCTOBER/NOVEMBER 2008 Bermagui revisited In an earlier bulletin I reported on the molluscan fauna of Point Dickinson, Bermagui, which is one of my favorite collecting localities. -
An Invitation to Monitor Georgia's Coastal Wetlands
An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources). -
Records and Descriptions of Epitoniidae (Orthogastropoda
Hindawi Publishing Corporation International Journal of Zoology Volume 2012, Article ID 394381, 12 pages doi:10.1155/2012/394381 Research Article Records and Descriptions of Epitoniidae (Orthogastropoda: Epitonioidea) from the Deep Sea off Northeastern Brazil and a Checklist of Epitonium and Opalia from the Atlantic Coast of South America Silvio F. B. Lima,1 Martin L. Christoffersen,1 JoseC.N.Barros,´ 2 and Manuella Folly3 1 Departamento de Sistematica´ e Ecologia, Universidade Federal da Para´ıba (UFPB), 58059-900 Joao˜ Pessoa, PB, Brazil 2 Laboratorio´ de Malacologia, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Avenida Dom Manuel de Medeiros S/N, Dois Irmaos,˜ 52171-030 Recife, PE, Brazil 3 Departamento de Zoologia, Instituto de Biologia, Centro de Ciˆencias da Saude,´ Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao,˜ 21941-570 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to Silvio F. B. Lima, [email protected] Received 23 August 2011; Revised 7 October 2011; Accepted 13 December 2011 Academic Editor: Roger P. Croll Copyright © 2012 Silvio F. B. Lima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A total of six genera and 10 species of marine gastropods belonging to the family Epitoniidae were collected from dredges of the continental slope off Brazil during the development of the REVIZEE (Live Resources of the Economic Exclusive Zone) Program. These species, referable to the genera Alora, Amaea, Cycloscala, Epitonium, Gregorioiscala, and Opalia, are reported from bathyal depths off northeastern Brazil. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella Vectensis
Reference: BiD!. Bull. 182: 169-176. (April, 1992) The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis CADET HAND AND KEVIN R. UHLINGER Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, California 94923 Abstract. Nematostella vectensis, a widely distributed, water at room temperatures (Stephenson, 1928), and un burrowing sea anemone, was raised through successive der the latter conditions some species produce numerous sexual generations at room temperature in non-circulating asexual offspring by a variety of methods (Cary, 1911; seawater. It has separate sexes and also reproduces asex Stephenson, 1929). More recently this trait has been used ually by transverse fission. Cultures of animals were fed to produce clones ofgenetically identical individuals use Artemia sp. nauplii every second day. Every eight days ful for experimentation; i.e., Haliplanella luciae (by Min the culture water was changed, and the anemones were asian and Mariscal, 1979), Aiptasia pulchella (by Muller fed pieces of Mytilus spp. tissue. This led to regular Parker, 1984), and Aiptasia pallida (by Clayton and Las spawning by both sexes at eight-day intervals. The cultures ker, 1984). We now add one more species to this list, remained reproductive throughout the year. Upon namely Nematostella vectensis Stephenson (1935), a small, spawning, adults release either eggs embedded in a gelat burrowing athenarian sea anemone synonymous with N. inous mucoid mass, or free-swimming sperm. In one ex pellucida Crowell (1946) (see Hand, 1957). periment, 12 female isolated clonemates and 12 male iso Nematostella vectensis is an estuarine, euryhaline lated clonemates were maintained on the 8-day spawning member ofthe family Edwardsiidae and has been recorded schedule for almost 8 months.